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Abstract

This paper studies unsupervised learning
of semantic verb classes through clus-
tering directed by verb subcategorization
frames. In contrast to previous work, we
provide a line of evidence about the no-
ticeable role polysemy has on the clusters
formed. We use the simple nearest neigh-
bours method, as well as an information-
theoretic clustering technique, the Infor-
mation Bottleneck. For evaluation, we
introduce principled extensions to stan-
dard measures, in order to adapt them
to polysemous gold standards. The find-
ings demonstrate that polysemy should
be taken into account whenever undisam-
biguated syntactic data is utilized for re-
vealing semantics.

1 Introduction

Classifications which aim to capture the close rela-
tion between the syntax and semantics of verbs have
attracted a considerable research interest in both lin-
guistics and computational linguistics (e.g. (Jack-
endoff, 1990; Levin, 1993; Pinker, 1989; Dang et
al., 1998; Dorr, 1997; Merlo and Stevenson, 2001)).
While such classifications may not provide a means
for full semantic inferencing, they can capture gen-
eralizations over a range of linguistic properties, and
can therefore be used as a means of reducing redun-
dancy in the lexicon and for filling gaps in lexical
knowledge.

Verb classifications have, in fact, been used to
support many natural language processing (NLP)
tasks, such as language generation, machine transla-
tion (Dorr, 1997), document classification (Klavans
and Kan, 1998), word sense disambiguation (Dorr
and Jones, 1996) and subcategorization acquisition
(Korhonen, 2002).

One attractive property of these classifications is
that they enable (to a certain extent) inferring the se-
mantics of a verb on the basis of its syntactic be-
haviour. In recent years several attempts have been
made to automatically induce semantic verb classes
from (mainly) syntactic information in corpus data
(Joanis, 2002; Merlo et al., 2002; Schulte im Walde
and Brew, 2002).

In this paper, we focus on the particular task
of classifying subcategorization frame (SCF) distri-
butions in a semantically motivated manner. Pre-
vious research has demonstrated that clustering
can be useful in inferring Levin-style semantic
classes (Levin, 1993) from both English and Ger-
man verb subcategorization information (Brew and
Schulte im Walde, 2002; Schulte im Walde, 2000;
Schulte im Walde and Brew, 2002).

We propose a novel approach, which involves: (i)
obtaining SCF frequency information from a lexi-
con extracted automatically using the comprehen-
sive system of Briscoe and Carroll (1997) and (ii)
applying a clustering mechanism to this informa-
tion. We use clustering methods that process raw
distributional data directly, avoiding complex pre-
processing steps required by other advanced meth-
ods (e.g. (Brew and Schulte im Walde, 2002)).

In contrast to earlier work, we give special empha-



sis on polysemy. Earlier work has largely ignored
this issue by assuming a single gold standard class
for each verb (whether polysemic or not). The rel-
atively good clustering results obtained suggest that
many polysemic verbs do have some predominating
sense in corpus data. However, this sense can vary
across corpora (Roland et al., 2000) and assuming
a single sense is inadequate for an important group
of medium and high frequency verbs whose distri-
bution of senses in balanced corpus data tends to be
flat rather than zipfian (Preiss and Korhonen, 2002).

To investigate the effect of polysemy, we intro-
duce a new evaluation scheme against a polysemic
gold standard, which allows for sense variation. This
helps to explain the results and offers a better insight
into the potential and limits of clustering polysemic
SCFdata semantically.

We discuss our gold standards and the choice of
test verbs in section 2. Section 3 describes the
method for subcategorization acquisition and sec-
tion 4 presents the approach to clustering. Details
of the experimental evaluation are supplied in sec-
tion 5. Section 6 concludes with directions for future
work.

2 Semantic Verb Classes and Test Verbs

Levin’s taxonomy of verbs and their classes (Levin,
1993) is the largest verb classification in English,
employed widely in evaluation of automatic clas-
sifications. It provides a classification of 3,024
verbs (4,186 senses) into 48 broad / 192 fine grained
classes. Although it is quite extensive, it is not ex-
haustive. As it primarily concentrates on verbs tak-
ing NP andPP complements and does not provide a
comprehensive set of senses for verbs, is not suitable
for evaluation of polysemic classifications.

We employed as a gold standard a substan-
tially extended version of Levin’s classification
constructed by Korhonen (2003). This incorpo-
rates Levin’s classes, 26 additional classes by
Dorr (1997)1, and 57 new classes for verb types not
covered comprehensively by Levin or Dorr.

110 test verbs were chosen from this gold stan-
dard, 78 polysemic and 32 monosemous ones. Some
low frequency verbs were included to investigate the

1These classes are incorporated in the ’LCS database’
(http://www.umiacs.umd.edu/∼bonnie/verbs-English.lcs).

effect of sparse data on clustering performance. To
ensure that our gold standard covers all (or most)
senses of these verbs, we looked into WordNet
(Miller, 1990) and assigned all the WordNet senses
of the verbs to gold standard classes2.

Two versions of the gold standard were created:
monosemousandpolysemic. The monosemous one
lists only a single sense for each test verb, that cor-
responding to its predominant (most frequent) sense
in WordNet. The polysemic one provides a compre-
hensive list of senses for each verb. The test verbs
and their classes are shown in table 1. The classes
are indicated by number codes from the classifica-
tions of Levin, Dorr (the classes starting with 0) and
Korhonen (the classes starting with A).3 The pre-
dominant sense is indicated by bold font.

3 Subcategorization Information

We obtain ourSCF data using the subcategorization
acquisition system of Briscoe and Carroll (1997).
We expect the use of this system to be benefi-
tial: it employs a robust statistical parser (Briscoe
and Carroll, 2002) which yields complete though
shallow parses, and a comprehensiveSCF classifier,
which incorporates 163SCF distinctions, a super-
set of those found in theANLT (Boguraev et al.,
1987) andCOMLEX (Grishman et al., 1994) dictio-
naries. TheSCFs abstract over specific lexically-
governed particles and prepositions and specific
predicate selectional preferences but include some
derived semi-predictable bounded dependency con-
structions, such as particle and dative movement.

78 of these ‘coarse-grained’SCFs appeared in our
data. In addition, a set of 160 fine grained frames
were employed. These were obtained by parameter-
izing two high frequencySCFs for prepositions: the
simple PP and NP + PP frames. The scope was re-
stricted to these two frames to prevent sparse data
problems in clustering.

A SCF lexicon was acquired using this system
from the British National Corpus (Leech, 1992,
BNC) so that a maximum of 7000 citations were

2As WordNet incorporates particularly fine grained sense
distinctions, some senses were found which did not appear in
our gold standard. As many of them appeared marginal and/or
low in frequency, we did not consider these additional senses in
our experiment.

3The gold standard assumes Levin’s broad classes (e.g. class
10) instead of possible fine-grained ones (e.g. class 10.1).



TEST GOLD STANDARD TEST GOLD STANDARD TEST GOLD STANDARD TEST GOLD STANDARD
VERB CLASSES VERB CLASSES VERB CLASSES VERB CLASSES

place 9 colour 24, 31, 45 concentrate 31, 45 look 30, 35
lay 9 dye 24, 21, 41 focus 31, 45 stare 30
drop 9, 45, 004, 47, build 26, 45 force 002, 11 glow 43

51, A54, A30
pour 9, 43, 26, 57, 13, 31 bake 26, 45 persuade 002 sparkle 43
load 9 invent 26, 27 urge 002, 37 dry 45
settle 9, 46, A16, 36, 55 publish 26, 25 want 002, 005, 29, 32 shut 45
fill 9, 45, 47 cause 27, 002 need 002, 005, 29, 32 hang 47, 9, 42, 40
remove 10, 11, 42 generate 27, 13, 26 grasp 30, 15 sit 47, 9
withdraw 10, A30 induce 27, 002, 26 understand 30 disappear 48
wipe 10, 9 acknowledge 29, A25, A35 conceive 30, 29, A56 vanish 48
brush 10, 9, 41, 18 proclaim 29, 37, A25 consider 30, 29 march 51
filter 10 remember 29, 30 perceive 30 walk 51
send 11, A55 imagine 29, 30 analyse 34, 35 travel 51
ship 11, A58 specify 29 evaluate 34, 35 hurry 53, 51
transport 11, 31 establish 29, A56 explore 35, 34 rush 53, 51
carry 11, 54 suppose 29, 37 investigate 35, 34 begin 55
drag 11, 35, 51, 002 assume 29, A35, A57 agree 36, 22, A42 continue 55, 47, 51
push 11, 12, 23, 9, 002 think 29, 005 communicate 36, 11 snow 57, 002
pull 11, 12, 13, 23, 40, 016 confirm 29 shout 37 rain 57
give 13 believe 29, 31, 33 whisper 37 sin 003
lend 13 admit 29, 024, 045, 37 talk 37 rebel 003
study 14, 30, 34, 35 allow 29, 024, 13, 002 speak 37 risk 008, A7
hit 18, 17, 47, A56, 31, 42 act 29 say 37, 002 gamble 008, 009
bang 18, 43, 9, 47, 36 behave 29 mention 37 beg 015, 32
carve 21, 25, 26 feel 30, 31, 35, 29 eat 39 pray 015, 32
add 22, 37, A56 see 30, 29 drink 39 seem 020
mix 22, 26, 36 hear 30, A32 laugh 40, 37 appear 020, 48, 29
colour 24, 31, 45 notice 30, A32 smile 40, 37

Table 1: Test verbs and their monosemous/polysemic gold standard

used per test verb. The lexicon was evaluated against
manually analysed corpus data after an empirically
defined threshold of 0.025 was set on relative fre-
quencies ofSCFs to remove noisySCFs out. The
method yielded 71.8% precision and 34.5% recall.
When we removed the filtering threshold, and eval-
uated the noisy distribution, F-measure4 dropped
from 44.9 to 38.51.5

4 Clustering Method

Data clustering is a process which aims to partition a
given set into subsets (clusters) of elements that are
similar to one another, while ensuring that elements
that are not similar are assigned to different clusters.
We use clustering for partitioning a set of verbs. Our
hypothesis is that information aboutSCFs and their
associated frequencies is relevant for identifying se-
mantically related verbs. Hence, we useSCFs asrel-
evance featuresto guide the clustering process.6

4F = 2·precision·recall
precision+recall

5These figures are not particularly impressive because our
evaluation is exceptionally hard. We use 1) highly polysemic
test verbs, 2) a high number ofSCFs and 3) evaluate against
manually analysed data rather than dictionaries (the latter have
high precision but low recall).

6The relevance of the features to the task is evident when
looking at the probability of a randomverbi to share the same
predominant sense with another randomly chosenverbj (4.5%)
and when comparing this to the probability obtained when

In our work, we try to avoid task-oriented tun-
ing, such as pre-fixed thresholds or restricted clus-
ter sizes, used in some earlier verb clustering works.
Recently, a more principled technique has been ap-
plied by Brew and Schulte im Walde (2002) which
involves performing spectral decomposition and fea-
ture selection prior to clustering. While these ap-
proaches are worth investigating, we believe that
along with noise filtered using such pre-processing
steps, valuable information might be lost as well.
We prefer methods which approach data more
straightforwardly, in its raw distributional form.

We use two methods: (i) a simple hard clustering
method that collects the nearest neighbours (NN) of
each verb (figure 1), and (ii) the Information Bottle-
neck (IB), an iterative soft clustering method (Tishby
et al., 1999) based on information-theoretic grounds.

The NN method is very simple, but has some dis-
advantages. It deterministically outputs only one
clustering configuration, not allowing the examina-
tion of different cluster granularities. It is also highly
sensitive to noise: few exceptional neighbourhood
relations contradicting the typical trends in the data
would be enough to cause the formation of a single
cluster which encompasses all elements. Therefore,

verbj is the JS-divergence nearest neighbor ofverbi (36%) (see
figure 1 for the definition ofNN).



NN Clustering:
1. For each verbv:
2. Calculate theJSdivergence between theSCF

distributions ofv and all other verbs:

JS(p, q) = 1
2

[
D
(
p
∥∥∥p+q2

)
+D

(
q
∥∥∥p+q2

)]
3. Connectv with the most similar verb;
4. Find all the connected components

Figure 1: Connected components nearest neighbour
(NN) clustering.D is the Kullback-Leibler distance.

although theNN method produced interesting results
(see section 5), we employed the more sophisticated
IB method as well.

The IB method approaches data clustering from
an information-theoretic perspective. It quantifies
therelevance informationof a SCFdistribution with
respect to output clusters, through their mutual in-
formationI(Clusters; SCFs). The relevance infor-
mation is maximized, while thecompression infor-
mationI(Clusters;V erbs) is minimized. This en-
sures optimal compression of data through clusters.
The tradeoff between the two constraints is realized
through minimizing the cost term:

L = I(Clusters;V erbs)− βI(Clusters; SCFs) ,

whereβ is a parameter that balances the constraints.
The IB iterative algorithm finds a local minimum

of the above cost term. It takes three inputs: (i)SCF-
verb distributions, (ii) the desired number of clusters
K, and (iii) the value ofβ. (For a certainK, there is
some minimum possibleβ that increases withK. An
external loop modifiesβ until this value is reached).

Starting from a random configuration, the algo-
rithm repeatedly calculates, for each clusterK verb
V and SCF S, the following probabilities: (i) the
marginal proportion of the clusterp(K); (ii) the
probability p(S|K) for a SCF to occur with mem-
bers of the cluster; and (iii) the probabilityp(K|V )
for a verb to be assigned to the cluster. These prob-
abilities are used, each in its turn, for calculating the
other probabilities (figure 2). The collection of all
p(S|K)’s for a fixed clusterK can be regarded as a
probabilistic center (centroid) of that cluster in the
SCFspace.

The IB algorithm delivers as output the assign-
ment probabilitiesp(K|V ). Although we could use

IB Clustering (fixedβ):
Perform till convergence, for each time step
t = 1, 2, . . . :

1. zt(K,V ) = pt−1(K) e−βD[p(S|V )‖pt−1(S|K)]

(Whent = 1, initialize zt(K,V ) arbitrarily)

2. pt(K|V ) = zt(K,V )∑
K′ zt(K

′,V )

3. pt(K) =
∑

V p(V )pt(K|V )
4. pt(S|K) =

∑
V p(S|V )pt(V |K)

Figure 2: Information Bottleneck (IB) iterative clus-
tering.D is the Kullback-Leibler distance.

these probabilities for “soft” clustering (e.g. assign
a verbV to several clusters instead of just one) we
currently “harden” the output and assign eachV to
the most probable clusterK(V ) only7:

K(V ) = argmax
K

p(K|V ) .

The IB method gives an indication for the most
informative output configurations.8 It turns out that
intensifying the weight on the relevance information
I(Clusters; SCFs), i.e. introducing in repeated runs
gradually incrementedβ values to theIB iterative al-
gorithm (figure 2), allows the production of a larger
number of clusters (with too smallβ, some of the
clusters obtained are identical to one another). The
relevance information grows whenK andβ increase.
Those output configurations are regarded as infor-
mative where the relevance increases more sharply
betweenK − 1 andK clusters, than betweenK and
K + 1 toK + 2.

5 Experimental Evaluation

5.1 Method

A number of different strategies have been proposed
for evaluation of clustering. While there is little the-
oretical consensus on the best strategy, it is clear that
the choice of a method should ultimately depend on
the task at hand.

7This approach was taken to simplify our experiments.
However, we will study soft clustering in the future as it offers
a means to both investigate and address polysemy.

8Most works on clustering ignore this issue and refer to an
arbitrarily chosen number of clusters, or to the number of gold
standard classes, which cannot be assumed in realistic applica-
tions.



Here, we experiment with some measures which
have previously been used for evaluating hard verb
clusters against a monosemous gold standard. As
we currently assign a single sense to each polysemic
verb (sec. 5.3) these measures are also applicable for
evaluation against a polysemous gold standard.

The first method – the pairwise approach – eval-
uates clusters in terms of verb pairs. Although it
is somewhat questionable (strictly speaking, we do
not use clustering to classify verbs into pairs), we
include it here for comparison.

We measure thenon-weighted averaged pairwise
precision, i.e., the average proportion of all within-
cluster pairs that are correctly co-assigned:

AVPP= 1
K

K∑
i=1

number of correct pairs inki
number of pairs inki

where{ki}Ki=1 denotes the set of clusters.
The AVPP scores clusters irrespective of their

size. In order to favour larger clusters over small
ones we use theadjusted pairwise precision(APP):

APP= 1
K

K∑
i=1

num. of correct pairs inki
num. of pairs inki

· |ki|−1
|ki|+1 .

The APP penalizes clusters by a factor that increases
with cluster size.9

The second approach we adopt bases evaluation
on the matrixh(k, c) of cluster-class overlap counts.
This approach is more suitable for our task than
the pairwise approach, as it evaluates the acquired
classes as integral entities rather than collections of
pairs. If one thinks of the target as cluster-class
one-to-one exclusive match, then only the dominant,
most prevalent semantic class within each cluster
should be considered.

We denote the number of verbs in a clusterK that
take its prevalent class bynprevalent(K). Verbs that
do not take this class are considered as errors. Using
nprevalent, we define theweighted cluster purity: the
proportion of verbs in dominant classes among all
clustered verbs.

PUR =

K∑
i=1

nprevalent(ki)

number of verbs
9Our definition differs by a factor of 2 from that of

Schulte im Walde and Brew (2002).

Alg. K +PP –PP +PP –PP
AVPP: APP:

NN (24) 45% 41% 20% 18%
IB 42 35% 20% 15% 9%

PUR: mPUR:
NN (24) 50% 47% 48% 45%
IB 42 66% 60% 50% 38%

Table 2: Clustering performance on the predominant
senses, with and without prepositions

This measure favours a large number of clusters. A
perfect result is obtained for the trivial configuration
where each cluster contains a single element. To
cover for this bias, we introduce themodified purity,
where we accept only those dominant classes which
include two or more verbs:

mPUR =

∑
nprevalent(ki)≥2

nprevalent(ki)

number of verbs .

5.2 Evaluation Against the Predominant Sense

We first evaluated the clusters against the monose-
mous gold standard, assumingSCFs with and with-
out prepositions (section 2).

The NN algorithm produced 24 clusters. We re-
quested from theIB algorithmK = 2 to 60 clusters
on the 110-verb input. The upper limit was chosen
so as to slightly exceed the case when the average
cluster size110/K = 2. The counts for these runs
were extracted from unfiltered (noisy)SCFdistribu-
tions.10

We report theIB results forK = 25, 35 and42.
For these values, theSCF relevance satisfies our cri-
terion for a notable improvement in cluster quality
(see the end of section 4). The valueK = 35 is
very close to the actual number (34) of predominant
senses in the gold standard. In this way, theIB yields
structural information beyond clustering.

The results against the predominant sense are
shown in Table 2. The benefit of using fine-
grained SCFs (with prepositions) is evident. The
fact that these results are fairly good (comparable
to e.g. Schulte im Walde and Brew (2002)) indicates
that most of our test verbs indeed have a single pre-
dominating sense in balanced corpus data. We ar-

10This yielded better results, which might indicate that the
unfiltered “noisy” SCFs contain information which is valuable
for the task.



Different Pairs Fraction
Senses in cluster

0 39 51%
1 85 10%
2 625 7%
3 1284 3%
4 1437 3%

Table 3: The fraction of verb pairs clustered to-
gether, as a function of the number of different
senses between pair members (results of theNN al-
gorithm)

Common one irregular no irregular
Senses Pairs in cluster Pairs in cluster

0 2180 3% 3018 3%
1 388 9% 331 12%
2 44 20% 31 35%

Table 4: The fraction of verb pairs clustered to-
gether, as a function of the number of shared senses
(results of theNN algorithm)

gue, however, that evaluation against a monosemous
gold standard reveals only part of the picture.

5.3 Evaluation Against Multiple Senses

In evaluation against the polysemic gold standard,
we assume that a verb polysemous in our corpus data
may appear in a cluster with verbs that share any of
its senses. In order to evaluate the clusters against
polysemous data, we assigned each polysemic verb
V a single sense: the one it shares with the highest
number of verbs in the clusterK(V ).

Tables 3 and 4 show that polysemy has a direct
impact on clusters. Table 3 demonstrates that the
more two verbs differ by their senses, the lower their
chance of ending up in the same cluster. From ta-
ble 4 we see that the probability of two verbs to ap-
pear in the same cluster (NN results) increases with
the number of senses they share. However, it is not
only thedegreeof polysemy which influcences the
results, but also thetype. For verb pairs where at
least one of the members displays ‘irregular’ poly-
semy (i.e. it does not share itsfull set of senses with
any other verb), the probability of co-occurrence in
the same cluster is far lower than for verbs which are
polysemic in a ‘regular’ manner (Table 4).

In order to show that polysemy makes a non-
trivial contribution in shaping the clusters, we mea-

K Pred. Multiple Pred. Multiple
sense senses sense senses
AVPP: APP:

NN:
(24) 46% 60% (49% + 4σ) 21% 29% (23%+ 5σ)
IB:
25 24% 35% (27% + 5σ) 12% 18% (14%+ 5σ)
35 32% 43% (34% + 5σ) 14% 20% (16%+ 6σ)
42 35% 46% (38% + 4σ) 15% 19% (16%+ 3σ)

PUR: mPUR:
NN:
(24) 50% 60% (54% + 3σ) 48% 60% (46%+ 2σ)
IB:
25 46% 54% (50% + 3σ) 39% 48% (43%+ 3σ)
35 58% 69% (61% + 6σ) 47% 59% (50%+ 4σ)
42 66% 72% (69% + 2σ) 50% 59% (54%+ 2σ)

Table 5: Evaluation against the monosemous (Pred.)
and polysemous (Multiple) gold standards. The fig-
ures in parentheses are results of evaluation on ran-
domly polysemous data+ significance of the actual
figure. Results were obtained with fine-grainedSCFs
(including prepositions).

sured the improvement that can be due to pure
chance by creating randomly polysemous gold stan-
dards. We constructed 100 sets of random gold stan-
dards. In each iteration, the verbs kept their original
predominant senses, but the set of additional senses
was taken entirely from another verb - chosen at ran-
dom. By doing so, we preserved the dominant sense
of each verb, the total frequency of all senses and the
correlations between the additional senses.

The results, presented in table 5, indicate that the
improvement is significant at3σ level (except three
cases, where the significance is2σ), i.e., the proba-
bility of it being an artificial by-product of polysemy
is less than0.5%.

5.4 Qualitative Analysis of the Results

We also performed qualitative analysis by hand to
further investigate the effect of polysemy. Consider
the following representative clusters:

A1: talk (37),speak(37)

A2: look (30, 35),stare(30)

A3: focus(31, 45),concentrate(31, 45)

A4: add(22.1, 37.7, A56)

We observed close relation between the clustering
performace and the following patterns of semantic
behaviour:



1) Monosemy: We had 32 monosemous test
verbs. 10 gold standard classes included 2 or more
or these. 7 classes were correctly acquired us-
ing clustering (e.g.A1), indicating that clustering
monosemous verbs is fairly ‘easy’.

2) Predominant sense: 10 clusters were exam-
ined by hand whose members got correctly classi-
fied together, despite one of them being polysemous
(e.g. A2). In 8 cases there was a clear indication in
the data (when examiningSCFs and the selectional
preferences on argument heads) that the polysemous
verb indeed had its predominant sense in the rele-
vant class and that the co-occurrence was not due to
noise.

3) Regular Polysemy: Several clusters were pro-
duced which represent linguistically plausible inter-
sective classes (e.g.A3) (Dang et al., 1998) rather
than single classes.

4) Irregular Polysemy: Verbs with irregular pol-
ysemy11 were frequently assigned to singleton clus-
ters. For example,add (A4) has a ‘combining and
attaching’ sense in class 22 which involvesNP and
PP SCFs and another ‘communication’ sense in 37
which takes sententialSCFs. Irregular polysemy was
not a marginal phenomenon: it explains 5 of the 10
singletons in theIB output withK = 42.

Finally, we performed a qualitative analysis of er-
rors. Consider the following clusters:

B1: place(9), build (26, 26, 45),
publish(26, 25),carve(21, 25, 26)

B2: sin (003), rain (57), snow(57, 002)

B3: agree(36, 22, A42),appear(020, 48, 29),
begin(55), continue(55, 47, 51)

B4: beg(015, 32)

The following error types were identified:
1) Syntactic idiosyncracy: This was the most fre-

quent error type, exemplified inB1, whereplace is
incorrectly clustered withbuild, publishandcarve
merely because it takes prepositions similar than
these verbs (e.g.in, on, into).

2) Sparse data: Many of the low frequency verbs
(we had 12 with frequency less than 300) performed
poorly. In B2, sin (which had 53 occurrences) is
classified withrain and snowbecause it does not
occur in our data with the prepositionagainst -

11Recall our definition of irregular polysemy, section 5.3.

the ‘hallmark’ of its gold standard class (’Conspire
Verbs’).

3) Problems inSCF acquisition: These were not
numerous but occurred e.g. when the system could
not distinguish between different control (e.g. sub-
ject/object equi/raising) constructions (B3).

4) Gaps in the gold standard classification:B4
shows thatbegended up in a singleton cluster, de-
spite sharing its both gold standard classes with
pray. The problem is thatpray occurs frequently
in another sense, ‘address to God’, which gives rise
to an intransitiveSCF (e.g. he prayed all the day
long). This sense is too infrequent among verbs to
construct a meaningful class for it.

6 Discussion and Conclusions

This paper presented a new approach to automatic
semantic classification of verbs. It involved applying
the Information Bottleneck andNN methods to clus-
ter polysemicSCF distributions extracted from cor-
pus data using Briscoe and Carroll’s (1997) system.
A principled evaluation procedure was performed
which allowed to investigate the effect of polysemy
on the resulting classification.

Our investigation revealed that polysemy has a
considerable role on the clusters formed: polysemic
verbs with a clear predominant sense and those
which show similar regular polysemy get frequently
classified together. Homonymic verbs or verbs with
strong irregular polysemy tend to resist any classifi-
cation.

While we believe that evaluation should account
for these cases rather than ignore them, it is clear that
the issue of polysemy is related to another, bigger
issue: the potential and limitations of clustering in
inducing semantic information from polysemicSCF

data. Our results show that it is unrealistic to expect
that the most ‘important’ (high frequency) verbs in
language fall into classes corresponding to single
senses. However, our investigation also suggests
that clustering can be used for novel, previously un-
explored purposes: to detect from corpus data gen-
eral patterns of semantic behaviour (monosemy, pre-
dominant sense, regular/irregular polysemy).

Future work will involve improving the accuracy
of subcategorization acquisition, investigating the
role of noise (irregular / regular) in clustering, ex-



amining whether different syntactic/semantic verb
types require different approach in clustering, devel-
oping our gold standard classification further, and
extending our experiments to a larger number of
verbs and verb classes. In addition, we plan to in-
vestigate the use of soft clustering (without harden-
ing the output) and develop methods for evaluating
the soft output against polysemous gold standards.
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