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Abstract

This paper studies unsupervised learning
of semantic verb classes through clus-
tering directed by verb subcategorization
frames. In contrast to previous work, we

provide a line of evidence about the no-
ticeable role polysemy has on the clusters
formed. We use the simple nearest neigh-
bours method, as well as an information-
theoretic clustering technique, the Infor-

mation Bottleneck. For evaluation, we

introduce principled extensions to stan-
dard measures, in order to adapt them
to polysemous gold standards. The find-
ings demonstrate that polysemy should
be taken into account whenever undisam-
biguated syntactic data is utilized for re-

vealing semantics.

Introduction

Verb classifications have, in fact, been used to
support many natural language processingpPj
tasks, such as language generation, machine transla-
tion (Dorr, 1997), document classification (Klavans
and Kan, 1998), word sense disambiguation (Dorr
and Jones, 1996) and subcategorization acquisition
(Korhonen, 2002).

One attractive property of these classifications is
that they enable (to a certain extent) inferring the se-
mantics of a verb on the basis of its syntactic be-
haviour. In recent years several attempts have been
made to automatically induce semantic verb classes
from (mainly) syntactic information in corpus data
(Joanis, 2002; Merlo et al., 2002; Schulte im Walde
and Brew, 2002).

In this paper, we focus on the particular task
of classifying subcategorization framsedp distri-
butions in a semantically motivated manner. Pre-
vious research has demonstrated that clustering
can be useful in inferring Levin-style semantic
classes (Levin, 1993) from both English and Ger-
man verb subcategorization information (Brew and

Classifications which aim to capture the close rela>chulte im Walde, 2002; Schulte im Walde, 2000;
tion between the syntax and semantics of verbs hawehulte im Walde and Brew, 2002).

attracted a considerable research interest in both lin- We propose a novel approach, which involves: (i)
guistics and computational linguistics (e.g. (Jackebtaining scr frequency information from a lexi-
endoff, 1990; Levin, 1993; Pinker, 1989; Dang eton extracted automatically using the comprehen-
al., 1998; Dorr, 1997; Merlo and Stevenson, 2001)give system of Briscoe and Carroll (1997) and (ii)
While such classifications may not provide a mean@pplying a clustering mechanism to this informa-
for full semantic inferencing, they can capture gention. We use clustering methods that process raw
eralizations over a range of linguistic properties, andistributional data directly, avoiding complex pre-
can therefore be used as a means of reducing reduriocessing steps required by other advanced meth-
dancy in the lexicon and for filling gaps in lexical ods (e.g. (Brew and Schulte im Walde, 2002)).
knowledge.

In contrast to earlier work, we give special empha-



sis on polysemy. Earlier work has largely ignorecdeffect of sparse data on clustering performance. To
this issue by assuming a single gold standard classsure that our gold standard covers all (or most)
for each verb (whether polysemic or not). The relsenses of these verbs, we looked into WordNet
atively good clustering results obtained suggest th@iller, 1990) and assigned all the WordNet senses
many polysemic verbs do have some predominatingf the verbs to gold standard classes
sense in corpus data. However, this sense can varyTwo versions of the gold standard were created:
across corpora (Roland et al., 2000) and assumimgonosemousndpolysemic The monosemous one
a single sense is inadequate for an important grouists only a single sense for each test verb, that cor-
of medium and high frequency verbs whose distriresponding to its predominant (most frequent) sense
bution of senses in balanced corpus data tends to lmeWordNet. The polysemic one provides a compre-
flat rather than zipfian (Preiss and Korhonen, 2002hensive list of senses for each verb. The test verbs
To investigate the effect of polysemy, we intro-and their classes are shown in table 1. The classes
duce a new evaluation scheme against a polysendte indicated by number codes from the classifica-
gold standard, which allows for sense variation. Thitions of Levin, Dorr (the classes starting with 0) and
helps to explain the results and offers a better insigitorhonen (the classes starting with AJThe pre-
into the potential and limits of clustering polysemicdominant sense is indicated by bold font.
SCFdata semantically.
We discuss our gold standards and the choice

test verbs in section 2. Section 3 describes th@e obtain ourscFdata using the subcategorization
method for subcategorization acquisition and seggcquisition system of Briscoe and Carroll (1997).
tion 4 presents the approach to clustering. Detailg/e expect the use of this system to be benefi-
of the experimental evaluation are supplied in segial: it employs a robust statistical parser (Briscoe
tion 5. Section 6 concludes with directions for futuregng Carroll, 2002) which yields complete though
work. shallow parses, and a comprehensiae classifier,

) which incorporates 163cF distinctions, a super-
2 Semantic Verb Classes and Test Verbs gt of those found in thenLT (Boguraev et al.,

Levin’s taxonomy of verbs and their classes (Levin,lgg?) andcoMLEx (Grishman et al., 1994) dictio-

1993) is the largest verb classification in English?ar'es' TheSC_FS abstract over _s_pecmc IeX|caIIyT_
overned particles and prepositions and specific

employed widely in evaluation of automatic clas9°v¢ _ .
sifications. It provides a classification of 3 024predlcate selectional preferences but include some

verbs (4,186 senses) into 48 broad / 192 fine grainéj(t?nvsd sem|-pr:ed|ctabtl_e|bour;dgdt_dependency f[:on-
classes. Although it is quite extensive, it is not ex>tructions, such as particle and dative movement.

haustive. As it primarily concentrates on verbs tak- 38 Olf the;;t_coarse-gtralpigté? appea_red d'rf] our
ing NP andPpP complements and does not provide éja a. In addition, a Set 0 In€é grained frames

comprehensive set of senses for verbs, is not suitaﬁ’f’eere temprllqyﬁ?. These were ]f)btalned bi’ par.ameter-
for evaluation of polysemic classifications. 1Ing two high TrequencisCrs Tor prepositions: the

: N ]
We employed as a gold standard a substar‘?—'mplepp andNpP + ppframes. The scope was re

tially extended version of Levin’s classificationsm(:ted to these two frames to prevent sparse data

constructed by Korhonen (2003). This incorpo—prObIemS In clustering. , , ,
A scr lexicon was acquired using this system

r;;?rs (1;%\;; Sancéa:;iséwzc?aszcéil?gr \(jl(lart():liJI Sseessng om the British National Corpus (Leech, 1992,
' yp BNC) so that a maximum of 7000 citations were

covered comprehensively by Levin or Dorr.

110 test verbs were chosen from this gold stan- 2As WordNet incorporates particularly fine grained sense
distinctions, some senses were found which did not appear in

dard, 78 polysemic and 32 monosemous ones. SOM& gold standard. As many of them appeared marginal and/or

low frequency verbs were included to investigate th®w in frequency, we did not consider these additional senses in
- our experiment.

These classes are incorporated in thes database’ 3The gold standard assumes Levin’s broad classes (e.g. class
(http://www.umiacs.umd.edsbonnie/verbs-English.Ics). 10) instead of possible fine-grained ones (e.g. class 10.1).

& Subcategorization Information



TEST GOLD STANDARD TEST GOLD STANDARD TEST GOLD STANDARD TEST GOLD STANDARD

VERB CLASSES VERB CLASSES VERB CLASSES VERB CLASSES
place 9 colour 24,31, 45 concentrate 31, 45 look 30, 35
lay 9 dye 24,21,41 focus 31,45 stare 30
drop 9, 45, 004, 47, build 26, 45 force 002 11 glow 43

51, A54, A30

pour 9, 43, 26, 57, 13, 31 bake 26, 45 persuade 002 sparkle 43
load 9 invent 26,27 urge 002, 37 dry 45
settle 9, 46, A16, 36, 55 publish 26, 25 want 002 005, 29, 32 shut 45
fill 9, 45, 47 cause 27,002 need 002 005, 29, 32 hang 47,9, 42, 40
remove 10, 11, 42 generate 27,13, 26 grasp 30, 15 sit 47,9
withdraw | 10, A30 induce 27,002, 26 understand 30 disappear | 48
wipe 10,9 acknowledge | 29, A25, A35 conceive 30, 29, A56 vanish 48
brush 10,9, 41, 18 proclaim 29, 37, A25 consider 30, 29 march 51
filter 10 remember 29, 30 perceive 30 walk 51
send 11, A55 imagine 29, 30 analyse 34,35 travel 51
ship 11, A58 specify 29 evaluate 34,35 hurry 53,51
transport 11,31 establish 29, A56 explore 35,34 rush 53,51
carry 11,54 suppose 29, 37 investigate 35,34 begin 55
drag 11, 35, 51, 002 assume 29, A35, A57 agree 36,22, A42 continue 55,47, 51
push 11, 12, 23, 9, 002 think 29, 005 communicate | 36,11 snow 57,002
pull 11, 12, 13, 23, 40, 016 confirm 29 shout 37 rain 57
give 13 believe 29,31, 33 whisper 37 sin 003
lend 13 admit 29, 024, 045, 37 talk 37 rebel 003
study 14, 30, 34, 35 allow 29,024, 13, 002 speak 37 risk 008 A7
hit 18,17, 47, A56, 31,42 || act 29 say 37,002 gamble 008 009
bang 18,43, 9, 47, 36 behave 29 mention 37 beg 015, 32
carve 21, 25, 26 feel 30, 31, 35, 29 eat 39 pray 015 32
add 22,37, A56 see 30, 29 drink 39 seem 020
mix 22, 26, 36 hear 30, A32 laugh 40, 37 appear 020, 48, 29
colour 24,31, 45 notice 30, A32 smile 40, 37

Table 1: Test verbs and their monosemous/polysemic gold standard

used per test verb. The lexicon was evaluated againstin our work, we try to avoid task-oriented tun-
manually analysed corpus data after an empiricalling, such as pre-fixed thresholds or restricted clus-
defined threshold of 0.025 was set on relative freter sizes, used in some earlier verb clustering works.
guencies ofscrs to remove noisyscrs out. The Recently, a more principled technique has been ap-
method yielded 71.8% precision and 34.5% recalplied by Brew and Schulte im Walde (2002) which
When we removed the filtering threshold, and evalnvolves performing spectral decomposition and fea-
uated the noisy distribution, F-meastiréropped ture selection prior to clustering. While these ap-

from 44.9 to 38.5%. proaches are worth investigating, we believe that
_ along with noise filtered using such pre-processing
4 Clustering Method steps, valuable information might be lost as well.

N . . .. _We prefer methods which approach data more
Data clustering is a process which aims to partition gtraightforwardly in its raw distributional form.

given set into subsets (clusters) of elements that areW hods: (i imple hard cl _
similar to one another, while ensuring that elements r? lési two r|r|1et 0 hs (i) a simple ﬁt: ¢ ust(:rlng
that are not similar are assigned to different clusterdethod that collects the nearest neig oowrs) (0

We use clustering for partitioning a set of verbs. Ou?aaCh verb (figure ,1)’ and (ii) the'lnformation B.ottle-
hypothesis is that information abostrs and their neck (B), an iterative soft clustering method (Tishby

associated frequencies is relevant for identifying s& al., 1999) based_on |nformat|on-theoret|c groun_ds.
mantically related verbs. Hence, we s asrel- The NN method is very simple, but has some dis-

evance feature® guide the clustering proce$s. advantages. It deterministically outputs only one
e ——— I clustering configuration, not allowing the examina-
F f— -precision-reca.

“precision+recall tion of different cluster granularities. Itis also highly

5 3 . . .
These figures are not particularly impressive because our. ... s . . .
evaluation is exceptionally hard. We use 1) highly polysemi ensitive to noise: few exceptional neighbourhood

test verbs, 2) a high number strs and 3) evaluate against relations contradicting the typical trends in the data
manually analysed data rather than dictionaries (the latter hayggyld be enough to cause the formation of a single

high precision but low recall). lust hich Il el ts. Theref
5The relevance of the features to the task is evident whe?l uster which encompasses all elements. erefore,

looking at the probability of a randomerd; to share the same
predominant sense with another randomly chasef; (4.5%) wverb; is the JS-divergence nearest neighbarofh; (36%) (see
and when comparing this to the probability obtained wheiffigure 1 for the definition ofin).



NN Clustering: IB Clustering (fixed 3):
1. For each verb: Perform till convergence, for each time step
2. Calculate thasdivergence between thscF t=1,2,...:
distributions ofv and all other verbs: 1. %(K,V) = pi_1(K) e PPPEV)Ipe-1(SIK)]
18(p, q) = %[D (pHi%) i D@H%)] (Whent = 1, initialize z (K, V) arbitrarily)
Zt K,V
3. Connect with the most similar verb; 2. p(KIV) = 1w (zt(K/),V)
4. Find all the connected components 3. p(K) =Y p(V)pe(K|V)
. . 4. K) = K
Figure 1: Connected components nearest neighbour P(SIK) = 2y P(SIV)p(VIK)

(NN) clustering.D is the Kullback-Leibler distance. gigre 2: Information Bottleneckd) iterative clus-
tering. D is the Kullback-Leibler distance.
although theuN method produced interesting results

(see section 5), we employed the more SOph'Stlcat?Hese probabilities for “soft” clustering (e.g. assign

1B method as well. . )
. a verbV to several clusters instead of just one) we
The 1B method approaches data clustering from P ! .
. . . . ... currently “harden” the output and assign eacho
an information-theoretic perspective. It quantlfle%he most probable clusts (1) only”:
therelevance informatiolf a scFdistribution with P y:
respect to output clusters, through their mutual in- K(V) = argmax p(K|V)
formationI(Clusters; SCFs). The relevance infor- K

mation is maximized, while theompression infor- ) o
The 1B method gives an indication for the most

mation(Clusters; Verbs) is minimized. This en- _ _ orfs
sures optimal compression of data through C|us,[el,§1_formatlve output configuratiortslt turns out that

The tradeoff between the two constraints is realizef{€Nsifying the weight on the relevance information
through minimizing the cost term: I(Clusters; SCFs), i.e. introducing in repeated runs

gradually incremented values to thes iterative al-
L = I(Clusters; Verbs) — B1(Clusters; SCFs),  gorithm (figure 2), allows the production of a larger
] . number of clusters (with too small, some of the
where(3 is a parameter that balances the constraintgy siers obtained are identical to one another). The
The B iterative algorithm finds a local minimum o0\ ance information grows whéhandg increase.
of the above cost term. It takes three inputssF  ,qse output configurations are regarded as infor-
verb distributions, (ii) the desired number of cluster§na,[iVe where the relevance increases more sharply

KC, and (iii) the value of5. (For a certairiC, there is betweenC — 1 andk clusters, than betwed@ and
some minimum possiblé that increases witkl. An K10/ 42

external loop modifieg until this value is reached).

Starting from a random configuration, the algo5 Experimental Evaluation
rithm repeatedly calculates, for each cluskewerb
V and scF S, the following probabilities: (i) the 5.1 Method

marginal proportion of the clustes(K); (ii) the A number of different strategies have been proposed
probability p(S|K’) for a SCFto occur with mem- - for evaluation of clustering. While there is little the-
bers of the cluster; and (iii) the probabilip{ K[V')  oretical consensus on the best strategy, it is clear that
for a verb to be assigned to the cluster. These prolhe choice of a method should ultimately depend on
abilities are used, each in its turn, for calculating théhe task at hand.
other probabilities (figure 2). The collection of all ——— - _

SIKV's for a fixed cluster can be regarded as a This appro_ach was taken to S|mpI|fy our experiments.
p( | ) S g However, we will study soft clustering in the future as it offers

probabilistic centerdentroid of that cluster in the ameans to both investigate and address polysemy.
SCFspace. 8Most works on clustering ignore this issue and refer to an

Th lgorithm deli tout th . arbitrarily chosen number of clusters, or to the number of gold
€ 1B algorithm aelivers as outpu € asslgNyiandard classes, which cannot be assumed in realistic applica-

ment probabilitiep (K |V'). Although we could use tions.



Here, we experiment with some measures which Alg. | K [ +PP| PP || +PP [ —PP

: ) AVPP: APP:
have previously been used for evaluating hard verb NN | (24) | 45% | 41% || 20% | 18%
clusters against a monosemous gold standard. As B | 42 | 35% | 20% || 15% | 9%
we currently assign a single sense to each polysemic PUR mPUR
verb (sec. 5.3) these measures are also applicable for NN_| (24) | S0% | 47% || 48% | 45%

oo B | 42 | 66% | 60% || 50% | 38%

evaluation against a polysemous gold standard.
The first method — the pairwise approach — evalfable 2: Clustering performance on the predominant

uates clusters in terms of verb pairs. Although igenses, with and without prepositions

is somewhat questionable (strictly speaking, we do

not use clustering to classify verbs into pairs), we

include it here for comparison. This measure favours a large number of clusters. A
We measure theon-weighted averaged pairwise Perfect resultis obtained for the trivial configuration

precision i.e., the average proportion of all within- Where each cluster contains a single element. To

cluster pairs that are correctly co-assigned: cover for this bias, we introduce tineodified purity

where we accept only those dominant classes which

umber of correct pairs if; include two or more verbs:
number of pairs irk;

1 &on
AVPP=1 "
=1 nprevalent(ki)
prevalent (ki)=>2

number of verbs

mPUR =
where{k; }~ , denotes the set of clusters.

The AVPP scores clusters irrespective of thei
size. In order to favour larger clusters over smal

ones we use thadjusted pairwise precisiofAPP): We first evaluated the clusters against the monose-
mous gold standard, assumiegrs with and with-
.‘_

-1 out prepositions (section 2).
il +1 The NN algorithm produced 24 clusters. We re-
guested from thes algorithm/C = 2 to 60 clusters
The APP penalizes clusters by a factor thatincreasea the 110-verb input. The upper limit was chosen
with cluster size. so as to slightly exceed the case when the average
The second approach we adopt bases evaluatioluster sizel10/K = 2. The counts for these runs
on the matrixi(k, ¢) of cluster-class overlap counts.were extracted from unfiltered (noisgiF distribu-
This approach is more suitable for our task thations®
the pairwise approach, as it evaluates the acquiredWe report theB results forkC = 25, 35 and42.
classes as integral entities rather than collections gbr these values, thecFrelevance satisfies our cri-
pairs. If one thinks of the target as cluster-clasgerion for a notable improvement in cluster quality
one-to-one exclusive match, then only the dominangsee the end of section 4). The valkie= 35 is
most prevalent semantic class within each clustesery close to the actual number (34) of predominant
should be considered. senses in the gold standard. In this way,thgields
We denote the number of verbs in a clugiéthat  structural information beyond clustering.
take its prevalent class by evalent (K). Verbs that The results against the predominant sense are
do not take this class are considered as errors. Usiggown in Table 2. The benefit of using fine-
Nprevalent, WE define thaveighted cluster puritythe  grainedscrs (with prepositions) is evident. The
proportion of verbs in dominant classes among afact that these results are fairly good (comparable
clustered verbs. to e.g. Schulte im Walde and Brew (2002)) indicates
. that most of our test verbs indeed have a single pre-
> Nprevalent (ki) dominating sense in balanced corpus data. We ar-

PUR= o e oFverD _—
number or verbs %This yielded better results, which might indicate that the

°0ur definition differs by a factor of 2 from that of unfiltered “noisy”scrs contain information which is valuable
Schulte im Walde and Brew (2002). for the task.

.2 Evaluation Against the Predominant Sense

num. of correct pairs itk;
num. of pairs ink;

L& Ik
APP:EZ% g
1=



Different | Pairs | Fraction K Pred. Multiple Pred. Multiple
Senses in cluster sense senses sense senses
0 39 51% AVPP: APP:
1 85 10% NN:
2 625 7% (24) | 46% | 60% (49%+4)|| 21% | 29% (23%+ 5)
3 1284 3% IB:
4 1437 3% 25 | 24% | 35% (27%+5)|| 12% | 18% (14%+ &)
35 | 32% | 43%(34%+5)|| 14% | 20% (16%+ &)
Table 3: The fraction of verb pairs clustered to{ 42 | 35% | 46%(38%+4)| 15% | 19% (16%+ 3)
gether, as a function of the number of differen -~ PUR mPUR
senses between pair members (results ofthel- (24') 50% | 60% (54%+3)|| 48% | 60% (46%+ 2)
gorithm) IB:
25 | 46% | 54% (50%+&)|| 39% | 48% (43%+ 3)
35 | 58% | 69% (61%+&)|| 47% | 59% (50%+ &)
Common one irregular no irregular 42 | 66% | 72% (69% +2)|| 50% | 59% (54%+ 2)
Senses | Pairs| incluster| Pairs] in cluster
2 Z%Sg ggf 3%? 11’32"@ Table 5: Evaluation against the monosemous (Pred.)
0 0 . .
5 44 20% 31 35% and polysemous (Multiple) gold standards. The fig-

ures in parentheses are results of evaluation on ran-
Table 4: The fraction of verb pairs clustered to-domly polysemous data significance of the actual
gether, as a function of the number of shared senskgure. Results were obtained with fine-grairsetks
(results of thenN algorithm) (including prepositions).

gue, however, that evaluation against a monosemogigred the improvement that can be due to pure

gold standard reveals only part of the picture. chance by creating randomly polysemous gold stan-
dards. We constructed 100 sets of random gold stan-
5.3 Evaluation Against Multiple Senses dards. In each iteration, the verbs kept their original

é)redominant senses, but the set of additional senses

In evaluation against the polysemic gold standar .
. Wwas taken entirely from another verb - chosen at ran-
we assume that a verb polysemous in our corpus da&a

) g m. By doing so, we preserved the dominant sense
may appear in a cluster with verbs that share any of0 y g P

. . Of each verb, the total frequency of all senses and the
its senses. In order to evaluate the clusters against , o
CBrreIatlons between the additional senses.

polysemous data, we assigned each polysemic ver The results, presented in table 5, indicate that the

V a single sense: the one it shares with the higheﬁﬁprovement is significant 4 level (except three
number of verbs in the clustés (V).

cases, where the significance2is), i.e., the proba-

) Tables 3 and 4 show that polysemy has a dire%tility of it being an artificial by-product of polysemy
impact on clusters. Table 3 demonstrates that thgless thar.5%

more two verbs differ by their senses, the lower their
chance of ending up in the same cluster. From t&.4 Qualitative Analysis of the Results

ble 4 we see that the probability of two verbs to apye aiso performed qualitative analysis by hand to

pear in the same clusten results) increases with ¢, rther investigate the effect of polysemy. Consider
the number of senses they share. However, it is ngt, following representative clusters:

only the degreeof polysemy which influcences the

results, but also thégype For verb pairs where at Al: talk (37),speak(37)

least one of the members displays ‘irregular’ polyA2: look (30, 35),stare(30)

semy (i.e. it does not share fisll set of senses with A3: focus(31, 45),concentrate31, 45)

any other verb), the probability of co-occurrence ir}M: add(22.1, 37.7, A56)

the same cluster is far lower than for verbs which are ’ ’

polysemic in a ‘regular’ manner (Table 4). We observed close relation between the clustering
In order to show that polysemy makes a nonperformace and the following patterns of semantic

trivial contribution in shaping the clusters, we meabehaviour:



1) Monosemy: We had 32 monosemous teghe ‘hallmark’ of its gold standard class ('Conspire
verbs. 10 gold standard classes included 2 or mokéerbs’).
or these. 7 classes were correctly acquired us-3) Problems inscF acquisition: These were not
ing clustering (e.g.Al), indicating that clustering numerous but occurred e.g. when the system could
monosemous verbs is fairly ‘easy’. not distinguish between different control (e.g. sub-

2) Predominant sense: 10 clusters were exanect/object equi/raising) constructiord3).
ined by hand whose members got correctly classi- 4) Gaps in the gold standard classificatioB4
fied together, despite one of them being polysemowhows thabegended up in a singleton cluster, de-
(e.g.A2). In 8 cases there was a clear indication ispite sharing its both gold standard classes with
the data (when examiningCcrs and the selectional pray. The problem is thapray occurs frequently
preferences on argument heads) that the polysemdrsanother sense, ‘address to God’, which gives rise
verb indeed had its predominant sense in the reley an intransitivescr (e.g. he prayed all the day
vant class and that the co-occurrence was not duejshg). This sense is too infrequent among verbs to

noise. construct a meaningful class for it.
3) Regular Polysemy: Several clusters were pro-

duced which represent linguistically plausible inter6 Discussion and Conclusions

sective classes (e.cA3) (Dang et al., 1998) rather

than single classes. This paper presented a new approach to automatic
4) Irregular Polysemy: Verbs with irregular pol-semantic classification of verbs. Itinvolved applying

ysemy! were frequently assigned to singleton clusthe Information Bottleneck andn methods to clus-

ters. For exampleadd (A4) has a ‘combining and ter polysemicscr distributions extracted from cor-

attaching’ sense in class 22 which involwes and Pus data using Briscoe and Carroll’s (1997) system.

PP sck and another ‘communication’ sense in 37A principled evaluation procedure was performed

which takes sententialcrs. Irregular polysemy was Which allowed to investigate the effect of polysemy

not a marginal phenomenon: it explains 5 of the 10N the resulting classification.

singletons in theB output with/C = 42. Our investigation revealed that polysemy has a
Finally, we performed a qualitative analysis of erconsiderable role on the clusters formed: polysemic
rors. Consider the following clusters: verbs with a clear predominant sense and those
which show similar regular polysemy get frequently
B1: place(9), build (26, 26, 45), classified together. Homonymic verbs or verbs with
publish(26, 25), carve(21, 25, 26) strong irregular polysemy tend to resist any classifi-
B2: sin(003), rain (57), snow(57, 002) cation.
B3: agree(36, 22, A42),appear(020, 48, 29), While we believe that evaluation should account
begin(55), continue(55, 47, 51) for these cases rather than ignore them, it is clear that
B4: beg(015, 32) the issue of polysemy is related to another, bigger
issue: the potential and limitations of clustering in
The following error types were identified: inducing semantic information from polysenscr

1) Syntactic idiosyncracy: This was the most freqata. Our results show that it is unrealistic to expect
quent error type, exemplified iB1, whereplaceis  that the most ‘important’ (high frequency) verbs in
incorrectly clustered witlbuild, publishand carve language fall into classes corresponding to single
merely because it takes prepositions similar thagenses. However, our investigation also suggests
these verbs (e.gn, on, intg. that clustering can be used for novel, previously un-

2) Sparse data: Many of the low frequency verbgxplored purposes: to detect from corpus data gen-
(we had 12 with frequency less than 300) performegra| patterns of semantic behaviour (monosemy, pre-
poorly. In B2, sin (which had 53 occurrences) is dominant sense, regular/irregular polysemy).
classified withrain and snowbecause it does not  Fytyre work will involve improving the accuracy
occur in our data with the prepositioagainst-  of subcategorization acquisition, investigating the

HRecall our definition of irregular polysemy, section 5.3.  role of noise (irregular / regular) in clustering, ex-



amining whether different syntactic/semantic verl.
types require different approach in clustering, devel-
oping our gold standard classification further, and
extending our experiments to a larger number o
verbs and verb classes. In addition, we plan to in-
vestigate the use of soft clustering (without hardenA
ing the output) and develop methods for evaluating

the soft output against polysemous gold standards.
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