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Laburpena
Lan honetan semantika distribuzionalaren eta ikasketa automatikoaren erabilera aztertzen
dugu itzulpen automatiko estatistikoa hobetzeko. Bide horretan, erregresio logistikoan
oinarritutako ikasketa automatikoko eredu bat proposatzen dugu hitz-segiden itzulpen-
probabilitatea modu dinamikoan modelatzeko. Proposatutako eredua itzulpen automatiko
estatistikoko ohiko itzulpen-probabilitateen orokortze bat dela frogatzen dugu, eta tes-
tuinguruko nahiz semantika distribuzionaleko informazioa barneratzeko baliatu ezaugarri
lexiko, hitz-cluster eta hitzen errepresentazio bektorialen bidez. Horretaz gain, semantika
distribuzionaleko ezagutza itzulpen automatiko estatistikoan txertatzeko beste hurbilpen
bat lantzen dugu: hitzen errepresentazio bektorial elebidunak erabiltzea hitz-segiden
itzulpenen antzekotasuna modelatzeko. Gure esperimentuek proposatutako ereduen balia-
garritasuna erakusten dute, emaitza itxaropentsuak eskuratuz oinarrizko sistema sendo
baten gainean. Era berean, gure lanak ekarpen garrantzitsuak egiten ditu errepresentazio
bektorialen mapaketa elebidunei eta hitzen errepresentazio bektorialetan oinarritutako
hitz-segiden antzekotasun neurriei dagokienean, itzulpen automatikoaz haratago balio
propio bat dutenak semantika distribuzionalaren arloan.

Abstract
In this work, we explore the use of distributional semantics and machine learning to
improve statistical machine translation. For that purpose, we propose the use of a logistic
regression based machine learning model for dynamic phrase translation probability mod-
eling. We prove that the proposed model can be seen as a generalization of the standard
translation probabilities used in statistical machine translation, and use it to incorporate
context and distributional semantic information through lexical, word cluster and word
embedding features. Apart from that, we explore the use of word embeddings for phrase
translation probability scoring as an alternative approach to incorporate distributional
semantic knowledge into statistical machine translation. Our experiments show the
effectiveness of the proposed models, achieving promising results over a strong baseline.
At the same time, our work makes important contributions in relation to bilingual word
embedding mappings and word embedding based phrase similarity measures, which go be-
yond machine translation and have an intrinsic value in the field of distributional semantics.
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1 Introduction

Machine translation has been one of the most prominent applications of natural language
processing and artificial intelligence since their early days, meeting the dream to break the
language barrier in an increasingly global yet diverse world. The classical approach, based
on rules, has been progressively replaced by statistical machine translation, which has
become the dominant paradigm bringing about a breakthrough to the field. Nevertheless,
in spite of the great progress in recent years, current machine translation engines still suffer
from important limitations, which are mostly related to the following factors:

• Sparsity of natural language, causing many terms or linguistic phenomena to be
missing or poorly represented in the training corpora with the inherent difficulty
to properly model them, a problem that is accentuated by the scarcity of bilingual
resources for the vast majority of language pairs.

• Locality of the statistical methods used, with the inherent difficulty to properly model
context information, long distance dependencies and morphosyntactically diverging
language pairs.

• Inflexibility of the statistical models used, with the inherent difficulty to incorpo-
rate external linguistic information from other natural language processing tools and
resources.

In this work, we explore the use of distributional semantic and machine learning tech-
niques to address these issues with the aim to improve machine translation. More con-
cretely, we develop a logistic regression based machine learning model for dynamic phrase
translation probability scoring, which we prove to be a generalization of the standard
translation probabilities used in statistical machine translation that allows to naturally
incorporate additional features to obtain better probability estimates. In this regard, we
explore the use of lexical features shared across different phrase pairs that could have a
smoothing effect and help to overcome the sparsity problem, source language context fea-
tures that could help to overcome the locality problem, and additional features for external
linguistic information that could help to overcome the inflexibility problem. Taking ad-
vantage of this last point, we also incorporate distributional semantic features into the
model through word clusters and word embeddings. Based on the distributional hypothe-
sis, which states that the meaning of each word in a language is defined by its usage and
can therefore be characterized by the words it is generally surrounded by, distributional
semantics attempts to build abstract representations of words based on their usage in a
large corpus. In particular, word clustering uses discrete classes to group related words
together, whereas word embeddings are dense, low-dimensional representations of words
in a continuous vector space. Therefore, these distributional semantic features do not only
serve to incorporate unsupervised knowledge acquired from large monolingual corpora into
the model, but are also useful to mitigate the sparsity problem. In addition to that, we
also explore an alternative method to incorporate distributional semantic information into
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machine translation through the use of bilingual word embeddings for phrase translation
similarity scoring. Some of our contributions in this direction go beyond machine trans-
lation and have an intrinsic value in distributional semantics. In particular, we develop
a general framework to learn bilingual word embedding mappings and show that several
existing methods fit naturally in it while revealing flaws in their theoretical justification.
At the same time, we analyze the centroid cosine similarity from a theoretical perspective
and propose alternative word embedding based phrase similarity measures that address
some of its issues.

This dissertation is structured as follows. From Chapter 2 to 4, we describe the back-
ground that serves as the basis for our work in statistical machine translation, large scale
machine learning and distributional semantics, respectively. More concretely, Chapter 2
presents the different machine translation paradigms, describes statistical machine transla-
tion in depth, outlines machine translation evaluation, and introduces the related software
used in the project. Chapter 3 then discusses supervised machine learning, describes linear
models with a focus on logistic regression and gradient descent, explains the limitations
of these models and different approaches to address them, discusses the peculiarities of
large scale machine learning, and presents the Vowpal Wabbit large scale machine learn-
ing system used in the project. After that, Chapter 4 discusses distributional semantics,
describing monolingual word embeddings, word clustering and bilingual word embeddings
as well as existing methods to integrate them in machine translation.

Chapter 5 through 8 then focus on our own contributions to the field. More con-
cretely, Chapter 5 describes the logistic regression model we propose for phrase translation
probability scoring, proves its equivalence with the relative frequency counting probability
estimates used in statistical machine translation, presents a set of lexical features for it,
and experimentally tests them on English-Spanish machine translation. Chapter 6 then
discusses the incorporation of distributional semantic features into the model through word
clusters and word embeddings and tests them on the same English-Spanish machine trans-
lation task. After that, we present our general framework for bilingual word embedding
mappings in Chapter 7, which starts with a basic optimization objective and allows for
several variants that we prove to be equivalent to other meaningful optimization goals, we
analyze its relation to other related methods proposed in the literature, and test them in
English-Italian word translation induction. Chapter 8 then discusses the use of bilingual
word embeddings for phrase translation similarity scoring, analyzing the standard centroid
cosine similarity from a theoretical perspective, proposing alternative phrase similarity
measures that address some of its issues and experimentally testing them on a new phrase
translation selection task we propose as well as on English-Spanish end-to-end machine
translation. Finally, Chapter 9 outlines the conclusions drawn from our work and suggests
futures lines of research.
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2 Statistical machine translation

The goal of machine translation (MT) is to automatically translate from one natural lan-
guage to another using computers. It has been one of the most prominent applications of
natural language processing since its early days as, in addition to being a very complete
problem, it has a great practical interest in an increasingly global world.

Different approaches have been followed to achieve this goal, which have been broadly
classified into two main groups: rule-based machine translation systems, which follow
a rational approach taking our linguistic knowledge of the languages involved as their basis,
and corpus-based machine translation systems, which follow an empirical approach
taking previously made translations as their basis. At the same time, the latter are di-
vided into example-based machine translation systems that translate by analogy, and
statistical machine translation systems that make use of different statistical models
for the translation process. The statistical approach has progressively replaced previous
attempts since the 1990s until becoming the main approach to MT nowadays (Hutchins,
2007), and it is also the approach that has been followed in this work.

The remaining of this chapter is organized as follows. Section 2.1 presents a more de-
tailed discussion of the different MT paradigms. Section 2.2 explains how word alignment
is done, which is the basis of most statistical machine translation systems. Section 2.3
then introduces the phrase-based statistical machine translation paradigm, which has been
the main approach to statistical machine translation and also the one used in this work.
Section 2.4 discusses the main limitations of phrase-based systems and presents alterna-
tive approaches that have arisen addressing them. After that, Section 2.5 outlines MT
evaluation. Section 2.6 then presents Moses, the most widely extended statistical machine
translation toolkit and also the one we use in this project. Finally, Section 2.7 concludes
the chapter.

In addition to the specific citations in the text, Jurafsky and Martin (2008) and, to a
lesser extent, Labaka (2010) and Manning and Schütze (1999) have been used as a general
reference for writing this chapter.

2.1 Machine translation paradigms

As introduced previously, there are two main machine translation paradigms: rule-based
machine translation and corpus-based machine translation, which is further divided into
example-based machine translation and statistical machine translation. This section gives
a brief overview of each of these paradigms, starting with rule-based approaches in Sec-
tion 2.1.1 and continuing with corpus-based ones in Section 2.1.2. Finally, Section 2.1.3
discusses hybrid approaches that try to combine different paradigms.

2.1.1 Rule-based machine translation

Rule-based machine translation (RBMT) makes use of the linguistic knowledge of the
source and the target languages as the basis to tackle machine translation. Depending on
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Figure 1: The Vauquois triangle

the nature of this knowledge, the abstraction level, and the intermediate representation
used, different approaches have been followed, which have been classified into direct sys-
tems, transfer-based systems and interlingual systems. The so called Vauquois triangle,
shown in Figure 1, has been typically used to illustrate these three strategies. As it can be
seen, the more close we move to the top of the triangle, the more complex the intermedi-
ate representation used becomes, requiring of a deeper processing. More concretely, each
approach works as follows:

• Direct systems translate word by word in a single step, without using any interme-
diate representation. They mainly rely on bilingual dictionaries for that, but basic
coherence and reordering rules have also been used in addition to them.

• Transfer-based system are based on contrastive knowledge, that is, the knowledge
of the differences between the source and the target language, and make use of
different rules to overcome them. For that purpose, two intermediate representations
are used, one for the source language and the other one for the target language,
dividing the translation process into the following three steps:

– In the analysis phase, the text to be translated is analyzed making use of the
standard natural language processing pipeline, usually involving morphological
analysis, morphological disambiguation or part-of-speech tagging, and syntactic
analysis. Depending on the nature of this analysis, these systems are further
divided into shallow-transfer systems, if only shallow parsing or chunking is
done, or deep-transfer systems, if the full parse tree is built.

– During the transfer phase, the source language representation is transformed
into the target language representation. Syntactic-transfer systems do this
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at the lexical and structural level by means of bilingual dictionaries and trans-
fer rules, whereas semantic-transfer systems also work at the semantic level
making use of additional structures to represent meaning.

– In the generation phase, the final translation is obtained from the target lan-
guage representation. Most of the times, morphological dictionaries serve for
this purpose.

• Interlingual systems make use of a single intermediate representation called inter-
lingua that is independent from any specific language. Thanks to this, the translation
process is reduced to two steps: the analysis phase encodes the meaning of the input
text into the interlingua, while the generation phase decodes the interlingua into the
output text. This way, unlike transfer-based systems, which work at a language pair
level, interlingual systems follow a global approach, working at a conceptual level.
The main advantage of this is that it makes it much easier to translate among several
languages, as it is enough to build the analysis and generation module for each of
them in a completely independent way from each other. However, getting a useful
interlingua representation has proved to be extremely challenging in practice, which
is the reason why the approach has not attracted too much attention in the last
decades.

2.1.2 Corpus-based machine translation

The corpus-based machine translation paradigm makes use of previously made human
translations as the basis to make new translations. The popularization of new technology
and, in particular, the Internet, has made huge amount of text data easily available to
the research community which, along with the computational power provided by modern
hardware, has motivated the raise of these approaches in the last decades. Parallel corpora
(i.e. bilingual texts aligned at segment -usually sentence- level) are the main resource
used for that. In particular, the research community has compiled several parallel corpora
coming from official documents translated into different languages and published through
the web by different public institutions.

As said before, there are two main paradigms that follow this approach, the so called
example-based machine translation and statistical machine translation, which are further
discussed in the following two subsections.

2.1.2.1 Example-based machine translation

Example-based machine translation (EBMT) systems translate by analogy, using a parallel
corpus at runtime as the only source of knowledge (Nagao, 1984; Somers, 2003). Many
different approaches have been proposed around this idea, generally involving the following
three steps:

• Matching, that is, searching for occurrences of the input text in the parallel corpus.
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Figure 2: The Vauquois triangle adapted for EBMT systems

• Alignment, that is, identifying the translation of each matched chunk in the parallel
corpus.

• Recombination, that is, combining the aligned chunks to obtain the best possible
translation of the input text.

Even though the underlying principle is completely different, these steps resemble the
analysis, transfer and generation steps of transfer-based RBMT systems, as they respec-
tively take care of processing the input text, moving it into the target language, and adapt-
ing it to obtain the final translation. This way, the Vauquois triangle has been adapted
for EBMT systems as shown in Figure 2. As it can be seen, in addition to transfer-based
RBMT, EBMT is also analogous to direct RBMT in one trivial case as, when an exact
match of the input text is found, its translation in the parallel corpus would be directly
used with no further processing.

2.1.2.2 Statistical machine translation

Statistical machine translation (SMT) systems use statistical models learned from parallel
corpora to tackle the problem of machine translation. This way, instead of focusing on the
translation process itself, this approach starts by looking at the output it should generate
first and, given a source language text F , tries to models the probability P (E|F ) of any
target language text E being its translation. Therefore, the goal of the system will simply
be to choose the translation Ê that maximizes this probability:

Ê = arg max
E

P (E|F )

The initial SMT models worked at the word level, but they were later superseded by
phrase-based systems capable of working with larger chunks of text, becoming the most
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widely used approach to SMT. However, these word level models are still used today
to align parallel corpora as explained later in Section 2.2, a necessary step for building
phrased-based systems, which are then discussed in Section 2.3.

Several extensions of the phrase-based approach have also been proposed, tree-based
models, capable of working with hierarchical structures, and factored models, which provide
a natural way to incorporate linguistic features into the SMT system, being the most
prominent ones. With the irruption of deep learning, there have also been several attempts
in the last few years to replace different components of traditional SMT systems with neural
networks, and neural machine translation, which tries to use neural networks to model the
entire translation process, has also emerged generating big expectations. All these other
approaches are later discussed in Section 2.4.

2.1.3 Hybrid machine translation

Even though SMT has become the main approach to MT, the fact is that each paradigm has
its own strengths and weaknesses. For instance, SMT systems tend to produce more natural
translations than RBMT systems, but their errors also tend to be more unpredictable
from the human perspective. For that reason, there have been several approaches to
combine different paradigms through hybridization, which can be broadly classified into
the following three groups (Lu and Xue, 2010):

• Hybrid combination takes one main system and uses another one to create or
improve resources for it. Following this approach, there have been attempts to adapt
RBMT rules for SMT systems, and also to improve RBMT systems from parallel
corpora using SMT techniques.

• Multi-engine or parallel combination translates the input text using several
independent systems, and uses an additional module to combine their output in the
best possible way.

• Multi-pass or serial combination uses the output of one system as the input of
another. Automatic post-edition is the most prominent application of this approach,
where one system tries to improve the output of another.

2.2 Word alignment

The goal of word alignment is to identify translation relationships among words in a parallel
corpus, usually at sentence level. This way, its output is a bipartite graph that links each
word in one language with those words in the target language that are considered to be its
translation.

In addition to being the foundation of most SMT systems, word alignment has also been
used in other crosslingual natural language processing tasks. However, most applications
require to align thousands and thousands of sentences for it to be useful, making manual
annotation unfeasible. For that reason, unsupervised learning is used instead, making
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use of different statistical models, IBM Models 1-5 (five models of increasing complexity)
(Brown et al., 1993) and Hidden Markov Models (HMM) (Vogel et al., 1996) being the
most prominent ones.

All these models are based on one important simplification, as they only allow to align
each word in the target language F with a single word in the source language E. In
order to make it possible to align words in the target language that do not have a direct
correspondence in the source language (known as spurious words), the source sentence is
assumed to have the null pseudo-token at position 0. This way, an alignment A can be
represented as a sequence of integers A = a1, a2, . . . , aJ , where aj denotes the position of
the source language word that has been aligned with the jth word in the target language,
I and J being the length of the source and the target languages and subject to 0 ≤ aj ≤ I.

Within this framework, given a word sequence E in the source language, each model
estimates the probability of obtaining the word sequence F in the target language through
any alignment A in one way or another, taking the optimal alignment Â that maximizes
this probability:

Â = arg max
A

P (F,A|E)

For instance, IBM Model 1, the simplest one among all of them, models the probabil-
ity of the source language word sequence E = e1, e2, . . . , eI and alignment A = a1, a2, . . . , aJ
generating the target language word sequence F = f1, f2, . . . , fJ as follows, where t(fx|ey)
denotes the probability of ey being translated as fx:

P (F |E,A) =
J∏
j=1

t(fj|eaj)

IBM Model 1 assumes that all the alignments are equally likely. Therefore, since there
are (I + 1)J possible alignments for a given target language length J and assuming that
the probability of the actual length being J is a small constant ε, the probability of the
source language word sequence E being aligned as A is estimated as follows:

P (A|E) =
ε

(I + 1)J

And, combining all the equations above, the model would choose the optimal alignment
Â for every entry in the parallel corpus as follows:

Â = arg max
A

P (F,A|E) = arg max
A

P (F |E,A)× P (A|E)

= arg max
A

ε

(I + 1)J

J∏
j=1

t(fj|eaj)

Finally, since the alignment of each word is decided independently from the rest, the
above equation can be simplified as follows:

Â = arg max
aj

t(fj|eaj) 1 ≤ j ≤ J
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The rest of the models try to overcome all those simplifications made by IBM Model 1
and, as a consequence, they turn out to be considerably more complex:

• IBM Model 2 adds an absolute reordering model, addressing the important limi-
tation in IBM Model 1 of not taking the order of the words into account.

• IBM Model 3 introduces the notion of fertility, modeling the number of target
language words that each source language word generates.

• IBM Model 4 incorporates a relative reordering model.

• IBM Model 5 fixes the deficiency problem in IBM Model 3 and 4, which assigned
a probability mass to impossible events as a consequence of not preventing words
being placed in positions that were already taken.

• Hidden Markov Models (HMM) are used as an alternative approach by using
the hidden states to represent source words, observations to represent target words
and transition probabilities to model alignment probabilities.

In any case, all the models combine the following two components in one way or another:

• The word alignment itself, represented as the sequence of integer A = a1, a2, . . . , aJ .

• Lexical weights or translation probabilities and other parameters of the model,
which corresponded to t(fx|ey) in the case of IBM Model 1.

Needless to say, if the model parameters were known beforehand, it would be trivial to
find the optimal alignment according to them. At the same time, if the alignments were
known beforehand, it would be straightforward to estimate the parameters of a model
(e.g. taking relative frequency estimates for the translation probabilities). It seems a
paradox that computing alignments requires of the model parameters while computing
the model parameters requires of alignments. However, if we had some estimation for
the model parameters, it would be possible to estimate the alignment probabilities, and
then use this estimation to re-estimate the model parameters. This is precisely the idea
behind the expectation maximization (EM) algorithm, which initializes all the probabilities
uniformly and finds better and better estimates for the alignment probabilities and the
model parameters by fixing one to re-estimate the other and the other way around in an
iterative process. As this is a never-ending story, only a fixed number of iterations are
usually performed. At the same time, the complexity of the most advanced models makes
it computationally unfeasible to make the exact calculations for each EM iteration, so the
simplest models, which do not have this limitation, are usually used to provide an initial
estimate.

Finally, recall that all these models only allow to align a target language word with a
single word in the source language. Even though this makes the alignment problem easier
to tackle, it might also pose an important limitation on the usefulness of the results, as it
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Figure 3: Intersection and union for alignment symmetrization (Koehn, 2016)

is possible that a target language word is actually the translation of several words in the
source language. In order to overcome this issue, alignment symmetrization techniques are
used, which compute word alignments in each direction independently and then combine
their results. Two straightforward options would be to take the intersection or the union
between both alignments. The former would likely discard some correct alignments, but
those that it keeps would presumably have a very high accuracy. At the same time, the
latter would be likely to contain most correct alignments, but the accuracy of the alignments
it keeps would presumably be lower. Figure 3 shows the effect of each of them for one
example case. Since both options have their own problems, more sophisticated alignment
methods have been proposed. These methods usually start from the intersection between
both alignments and incorporate additional alignment points from their union according
to different heuristics (Och and Ney, 2003).

2.3 Phrase-based statistical machine translation

Following the discussion in Section 2.1.2.2 on SMT systems, phrase-based models (Koehn
et al., 2003) try to find the translation Ê that maximizes the probability P (E|F ) of being
the translation of the input text F . Applying the Bayes’ rule, this can be formulated as
follows:

Ê = arg max
E

P (E|F ) = arg max
E

P (F |E)P (E)

P (F )
= arg max

E
P (F |E)P (E)
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As it can be seen, according to the last formulation the selection of the optimal trans-
lation Ê depends on two factors: the probability P (F |E) of the input text F being the
translation of the output text E, and the probability P (E) of the output text itself oc-
curring in the target language. Original phrase-based models follow this noisy channel
approach and use two independent components to model each of them, the so called trans-
lation and language models:

Ê = arg max
E

P (F |E)︸ ︷︷ ︸
translation

model

P (E)︸ ︷︷ ︸
language

model

Both the translation and the language models are statistical models in a phrase-based
system, whose parameters are estimated from large corpora. Besides them, these systems
have an additional component, the decoder, which takes care of searching for the translation
that maximizes the aforementioned probability. This is how they work one by one:

• The translation model assigns a probability to a given target language sentence
being translated as some source language sentence. For that purpose, phrase-based
models segment the source and the target sentences into pairs of aligned phrases
(sequences of words without any linguistic motivation) and typically calculate the
probability in question as follows:

P (F |E) =
I∏
i=1

φ(f̄i, ēi)d(ai − bi−1)

where φ(f̄i, ēi) corresponds to the translation probability and d(ai−bi−1) corresponds
to the distortion probability. The former models the probability of the phrase ēi in
the target language generating the phrase f̄i in the source language, whereas the
latter models the distance between the phrases in both languages. More concretely,
ai denotes the starting position of the source language phrase generated by the ith
phrase in the target language, while bi−1 denotes the ending position of the source
language phrase generated by the (i− 1)th phrase in the target language. There can
be different ways to calculate the distance itself, a simple approach being to raise a
small constant α to the distortion:

d(ai − bi−1) = α|ai−bi−1−1|

In order to estimate the translation probabilities φ(f̄i, ēi), word alignment is first
performed in both directions in a parallel corpus and symmetrization is applied as
described in Section 2.2. Having done that, all the phrase pairs that are consistent
with the resulting alignment points are extracted as shown in Figure 4. Finally,
relative frequency estimates are used for the translation probabilities:

φ(f̄ , ē) =
count(f̄ , ē)∑
f̄ count(f̄ , ē)
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Figure 4: Phrase pair extraction from word alignment (Koehn, 2016)

Typically, all the extracted phrase pairs are stored together with their translation
probability in a big data structure known as the phrase table.

• The language model assigns a probability to a given sequence of words w1, . . . , wm
occurring in the target language. Different models have been proposed for that,
but most of them are based on the concept of n-grams. Within this approach, the
probability of a sequence of words occurring in the language in question corresponds
to the product of the probability of each word occurring after the previous n words,
where n is a parameter of the model:

P (w1, . . . , wm) ≈
m∏
i=1

P (wi|wi−(n−1), . . . , wi−1)

This way, for different values of the parameter n different models like unigrams (n = 1,
i.e. the probability of each word is independent from the context), bigrams (n = 2)
and trigrams (n = 3) are defined. In order to calculate the conditional probabilities
for a given value of n, relative frequency estimates are usually taken from a large
monolingual corpus:

P (wi|wi−(n−1), . . . , wi−1) =
count(wi−(n−1), . . . , wi−1, wi)

count(wi−(n−1), . . . , wi−1)

Nevertheless, this model would assign a zero probability to words or n-grams not oc-
curring in the parallel corpus and, in order to overcome this issue, different smoothing
and backoff techniques are typically used.

• The decoder takes a text in the source language and generates the most probable
translation according to the translation and language models. From the algorithmic
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Figure 5: Decoding of Maria no daba una bofetada a la bruja verde (Koehn, 2016)

point of view, this is essentially a search problem, but the search space is so big (unless
a maximum length is defined, infinite and, even if it is, extremely big given all the
possible word combinations one could potentially generate) that it is unfeasible to
compute the exact solution. In fact, Knight (1999) proved that exact SMT decoding
is an NP-complete problem. For that reason, a heuristic search is performed instead,
creating the output text phrase by phrase until the input text is fully covered. More
concretely, a beam search is usually performed, which explores the state space level by
level expanding a predefined number of nodes each time. Figure 5 shows an example
of one such decoding.

2.3.1 Log-linear models

Even though phrase-based SMT was initially based on the noisy channel model, this has
been later replaced by log-linear models that combine several independent models known
as feature functions and directly search for the translation Ê with the highest P (E|F )
probability:

Ê = arg max
E

P (E|F ) = arg max
E

∏
i

hi (E,F )λi = arg max
E

∑
i

λi log hi (E,F )

where hi (E,F ) denotes the ith feature function and λi the weight assigned to it. In
practice, the translation and language models coming from the original noisy channel
approach are still the most relevant factors, but the architecture allows to incorporate
an arbitrary number of feature functions that model different aspects of the translation
process. A standard set of feature functions would include the following:

• The language model P (E) seen above.
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• The forward and inverse translation probabilities φ(ē|f̄) and φ(f̄ |ē) seen above.
The original noisy channel model only made use of the inverse translation probability,
but the forward probability is also incorporated in log-linear models.

• The forward and inverse lexical weighting pw(ē|f̄) and pw(f̄ |ē). These come
directly from the word translation probabilities of the word alignments, and they
can therefore be seen as an inheritance from the original word-based SMT systems,
having a smoothing effect over the phrase translation probabilities:

pw(f̄ |ē) = max
a

J∏
j=1

1

|{i|(i, j) ∈ a}|
∑
∀(i,j)∈a

p(fj|ei)

• The distortion probability or distance-based reordering model, also seen above.

• A constant word penalty.

• A constant phrase penalty.

• A constant unknown word penalty.

• Lexical reordering features.

Finally, the weights λi of log-linear models are usually tuned to optimize the translation
quality in a development set according to some automatic metric like BLEU (see Section
2.5 for more details on these). A stochastic method known as minimum error rate training
(MERT) is typically used for that (Och, 2003).

2.4 Addressing the limitations of statistical machine translation

Phrase-based systems have long been the state-of-the-art in machine translation. How-
ever, these models still suffer from important limitations, which are mostly related to the
following factors:

• Sparsity of natural language, causing many terms or linguistic phenomena to be
missing or poorly represented in the training corpora with the inherent difficulty
to properly model them, a problem that is accentuated by the scarcity of bilingual
resources for the vast majority of language pairs.

• Locality of the statistical methods used, with the inherent difficulty to properly model
context information, long distance dependencies and morphosyntactically diverging
language pairs.

• Inflexibility of the statistical models used, with the inherent difficulty to incorpo-
rate external linguistic information from other natural language processing tools and
resources.
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Recent research on machine translation has mostly focused on addressing these issues,
and several extensions of the phrase-based approach have been proposed with different
degrees of success. This section discusses the most relevant ones as introduced in Section
2.1.2.2: factored models, tree-based models and deep learning approaches including neural
machine translation. Later on, our work proposes two additional approaches to mitigate
the limitations of phrase-based systems: the use of logistic regression for dynamic phrase
translation probability modeling, incorporating additional lexical, context and distribu-
tional semantic features (Chapters 5 and 6), and the use of bilingual word embeddings for
phrase translation similarity scoring (Chapter 8).

2.4.1 Factored models

One important limitation of traditional phrase-based systems is that they work with the
surface form of words, making it difficult to incorporate linguistic information into the
translation process. This becomes obvious for morphologically rich languages like Basque,
where a single lemma can have dozens of different surface forms, severely accentuating the
sparsity problem of all statistical approaches in natural language processing. For instance,
there might be enough evidence in the training data to learn how to translate a given
lemma and a given grammatical case independently, but if their corresponding surface
form is not found in the parallel corpus, a traditional phrase-based system would not be
able to learn its translation.

Factored models (Koehn and Hoang, 2007) try to overcome this issue by incorporating
translation and generation steps for different layers of linguistic information known as
factors into the log-linear model discussed in Section 2.3.1. Each translation step learns
how to map some factors from one language to the other and, in that regard, they are
equivalent to the models discussed for phrase-based systems, except that they are not
necessarily limited to surface forms but can also work with other factors like lemmas or
part-of-speech tags, for instance. At the same time, generation steps model the probability
of obtaining one factor given some others. In addition to them, language models can also
be built for specific factors. Figure 6 shows an example factored model with one translation
step for lemmas, another translation step for the part-of-speech and morphological tags,
and one generative model from the lemma, part-of-speech and morphology to the surface
form.

2.4.2 Tree-based models

Another limitation of traditional phrase-based systems is that they directly map phrases
from one language to the other, without considering any structural correspondence. Tree-
based models (Chiang, 2005) overcome this by means of grammar rules, which incorporate
variables (known as non-terminals) in addition to words (known as terminals). This way,
just as a phrase-based model could have an entry in the phrase table with its associated
weights for “I have not seen it→ no lo he visto” and “I have not read it→ no lo he léıdo”,
a tree-based model might learn how to generalize this and have an entry for “I have not
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2 Related Work

Many attempts have been made to add richer in-
formation to statistical machine translation models.
Most of these focus on the pre-processing of the in-
put to the statistical system, or the post-processing
of its output. Our framework is more general and
goes beyond recent work on models that back off
to representations with richer statistics (Nießen and
Ney, 2001; Yang and Kirchhoff, 2006; Talbot and
Osborne, 2006) by keeping a more complex repre-
sentation throughout the translation process.

Rich morphology often poses a challenge to sta-
tistical machine translation, since a multitude of
word forms derived from the same lemma fragment
the data and lead to sparse data problems. If the in-
put language is morphologically richer than the out-
put language, it helps to stem or segment the input
in a pre-processing step, before passing it on to the
translation system (Lee, 2004; Sadat and Habash,
2006).

Structural problems have also been addressed by
pre-processing: Collins et al. (2005) reorder the in-
put to a statistical system to closer match the word
order of the output language.

On the other end of the translation pipeline, addi-
tional information has been used in post-processing.
Och et al. (2004) report minor improvements with
linguistic features on a Chinese-English task, Koehn
and Knight (2003) show some success in re-ranking
noun phrases for German-English. In their ap-
proaches, first, an n-best list with the best transla-
tions is generated for each input sentence. Then,
the n-best list is enriched with additional features,
for instance by syntactically parsing each candidate
translation and adding a parse score. The additional
features are used to rescore the n-best list, resulting
possibly in a better best translation for the sentence.

The goal of integrating syntactic information
into the translation model has prompted many re-
searchers to pursue tree-based transfer models (Wu,
1997; Alshawi et al., 1998; Yamada and Knight,
2001; Melamed, 2004; Menezes and Quirk, 2005;
Galley et al., 2006), with increasingly encouraging
results. Our goal is complementary to these efforts:
we are less interested in recursive syntactic struc-
ture, but in richer annotation at the word level. In
future work, these approaches may be combined.
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Figure 2: Example factored model: morphologi-
cal analysis and generation, decomposed into three
mapping steps (translation of lemmas, translation of
part-of-speech and morphological information, gen-
eration of surface forms).

3 Motivating Example: Morphology

One example to illustrate the short-comings of the
traditional surface word approach in statistical ma-
chine translation is the poor handling of morphol-
ogy. Each word form is treated as a token in it-
self. This means that the translation model treats,
say, the word house completely independent of the
word houses. Any instance of house in the training
data does not add any knowledge to the translation
of houses.

In the extreme case, while the translation of house
may be known to the model, the word houses may be
unknown and the system will not be able to translate
it. While this problem does not show up as strongly
in English — due to the very limited morphologi-
cal inflection in English — it does constitute a sig-
nificant problem for morphologically rich languages
such as Arabic, German, Czech, etc.

Thus, it may be preferably to model translation
between morphologically rich languages on the level
of lemmas, and thus pooling the evidence for differ-
ent word forms that derive from a common lemma.
In such a model, we would want to translate lemma
and morphological information separately, and com-
bine this information on the output side to ultimately
generate the output surface words.

Such a model can be defined straight-forward as
a factored translation model. See Figure 2 for an
illustration of this model in our framework.

Note that while we illustrate the use of factored
translation models on such a linguistically motivated
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Figure 6: An example factored model (Koehn and Hoang, 2007)

X it → no lo he X”, where X is a non-terminal. During decoding, the non-terminal X will
be expanded through other grammar rules following a tree structure, which is why these
models are said to be tree-based. These grammar rules can be automatically extracted
from word aligned corpora just as phrases, making use of syntactic annotations or not. As
a consequence, the tree structures might be linguistically motivated, in which case tree-
based models are commonly known as syntactic models, or not, in which case tree-based
models are commonly known as hierarchical models.

2.4.3 Deep learning and neural machine translation

As discussed later in Section 3.4.3, artificial neural networks are a family of models inspired
by biological neural networks (primarily the brain) that approximate unknown functions
through units connected by weights, analogous to neurons. In the last few years, these
models are revolutionizing artificial intelligence thanks to deep learning, which uses several
such processing layers to model high level abstractions. They have achieved a dramatic
improvement in the state of the art of several fields like speech recognition (Hinton et al.,
2012) and image processing (Krizhevsky et al., 2012), and natural language processing is
expected to be one of the next areas were deep learning will make a large impact in the
near future (LeCun et al., 2015).

One of the main strengths of deep learning when compared to existing statistical meth-
ods is the use of continuous representations of words in close relation to word embeddings
(see Section 4.1), which serves to mitigate the sparsity problem in natural language pro-
cessing. Based on this, deep learning models have been successfully applied at the different
components of phrase-based SMT systems, including the language model (Vaswani et al.,
2013), the reordering model (Li et al., 2013) and the translation model (Zhang et al., 2014;
Su et al., 2015; Cho et al., 2014) (see Section 4.4).

At the same time, a completely new approach known as neural machine translation has
recently emerged, which uses artificial neural networks to model the translation process
from end to end (Bahdanau et al., 2015; Jean et al., 2015; Sutskever et al., 2014; Luong
et al., 2014). Even if it is still too early to speak about a clear improvement with respect
to existing statistical systems, these models have achieved very competitive results in a
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surprisingly short period of time, and there is a high expectation that they could achieve
a large improvement in the state of the art in the future.

2.5 Evaluation in machine translation

Unlike other tasks where simple metrics like the accuracy or the f-score can be naturally
used to measure the quality of a system, evaluation is a very difficult task in MT. Broadly
speaking, two different dimensions are considered when evaluating an MT system: the fi-
delity (i.e. how accurately the information in the input text is preserved in the output text)
and the fluency (i.e. how natural and correct the output text is in the target language).
As it can be seen, these are tightly related to the translation and language models of SMT
systems, respectively.

Manual evaluation uses human raters to assess the quality of MT systems. One
possibility is to ask the evaluators to score the system according to different aspects of
the above dimensions (e.g. the clarity, naturalness, style, adequacy or informativeness of
the translations). It is also possible to compare the output of different systems instead
of evaluating them independently. An extrinsic evaluation can also be done, where end-
users are asked to use the MT system within its intended application and their experience
evaluated.

One advantage of manual evaluation is that it does not only assign numeric scores,
but also serves to get insight about the behavior of each system, helping to identify the
type of errors they do so that these can be properly addressed. It is also argued the best
evaluation will necessarily come from humans, as we are the intended users of MT and also
the ones with the linguistic knowledge to properly assess it. However, manual evaluation
is also inherently subjective and costly to carry out. As a consequence, the results of a
manual evaluation will always be difficult to reproduce accurately, and performing a new
manual evaluation for every iteration while developing a system will likely be unpractical.

Automatic evaluation overcomes these issues by means of different heuristic methods
to compare the output of an MT system with a reference translation made by a person. The
most widely used evaluation metric in this regard is the bilingual evaluation understudy
or BLEU (Papineni et al., 2002), which measures the similarity between the MT output
and the reference translation as follows:

BLEU = BP × exp

(
1

N

N∑
n=1

log pn

)

where BP is a brevity penalty defined as follows:

BP =

{
1 c > r

e(1−r/c) c ≤ r

where c is the length of the MT output, r is the length of the reference translation, and pn
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is the modified n-gram precision score defined as follows:

pn =

∑
C∈Candidates

∑
n-gram∈C

countclip (n-gram)∑
C′∈Candidates

∑
n-gram′∈C′

count (n-gram′)

2.6 Moses

Moses (Koehn et al., 2007; Koehn, 2016) is an open source toolkit for statistical machine
translation. It is licensed under the GNU Lesser General Public License (LGPL) and its
development is mainly supported by the European Union. The toolkit provides tools to
train and tune SMT systems as well as a decoder to run them, and in addition to the
dominant phrase-based paradigm it also supports tree-based and factored models. Thanks
to its active development community, ease of use, wide set of supported features and state-
of-the art performance, Moses has become the de facto benchmark for SMT research, and
it is also widely used in commercial systems.

In order to word align the parallel training corpus, Moses is commonly used together
with GIZA++ (Och and Ney, 2003), an extension of the GIZA word aligner developed by
Franz Josef Och and licensed under the GNU General Public License (GPL). It implements
the IBM Models 1-5 and HMM models discussed in Section 2.2 with several extensions,
improvements and optimizations. Apart from the official version, Qin Gao implemented a
multi-threaded version of GIZA++ called MGIZA, which is also integrated into Moses.

As for the language model, Moses supports the SRI, IRST, RandLM, KenLM, DALM,
OxLM and NPLM toolkits. They are all open source projects with the exception of SRI,
which is nonetheless freely available for research purposes. Moses includes KenLM by
default, but the rest of the toolkits are also well integrated and can be easily used instead
if preferred.

2.7 Conclusions

From rule-based to corpus-based systems, there are many different approaches to machine
translation, phrase-based SMT being the dominant paradigm in recent times. In spite of
its success, however, this approach still suffers from important limitations like the sparsity
of natural language, the locality of the statistical methods it uses, and the difficulty to in-
corporate external linguistic information. In this work, we try to address these issues using
two different strategies. First, in Chapter 5 we propose the use of logistic regression for
dynamic phrase translation probability modeling, which we prove to be a generalization of
the standard translation probabilities used in phrase-based SMT. This provides an alterna-
tive to factored models to incorporate linguistic information, as we do with distributional
semantic features in Chapter 6, with the advantage of allowing context features to over-
come the locality problem as well as additional features shared across different phrase pairs
to overcome the sparsity problem. Second, in Chapter 8 we explore the use of bilingual
word embeddings, like the ones we propose in Chapter 7, for phrase translation similarity
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scoring, incorporating distributional semantic knowledge into the translation model while
addressing the sparsity problem thanks to the continuous word representations, in close
relation to deep learning models for machine translation. Apart from that, we have seen
that, given the cost and subjectiveness of manual evaluation, automatic metrics are typi-
cally used instead, as we do in this project with BLEU, the most widely used one among
them. Finally, we have presented Moses, which has become the de facto toolkit for SMT
research and also the one we use for our work.
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3 Large scale machine learning

Machine learning is a subfield of computer science that studies algorithms that learn to
make predictions or decisions based on data. There are many different tasks that fall under
this broad definition, which are commonly classified into supervised learning, where
the data contains the characterization of each training instance along with its expected
output, unsupervised learning, where the latter is not available so the algorithm has
to find the structure of the data, semi-supervised learning, where only a subset of the
training instances contain the expected output, and reinforcement learning, where the
algorithm receives feedback about its performance dynamically.

This chapter focuses on supervised learning, which is the most widely used one to the
extent that machine learning is sometimes used as a synonym for it, and it is also the one
that is relevant for this work. Section 3.1 first presents the basic concepts in this area.
Section 3.2 then introduces a family of supervised learning algorithms called linear models
and discusses a very simple model that belongs to this group known as the perceptron.
Section 3.3 presents a more sophisticated linear model named logistic regression together
with gradient descent, a widely used optimization procedure for this and other models. The
limitations of these linear models are then discussed in Section 3.4 together with different
approaches to overcome them. Section 3.5 then describes the peculiarities and difficulties
of applying these learning algorithms to large amounts of data. After that, Section 3.6
presents Vowpal Wabbit, a widely used open-source library for such large scale learning
problems, and also the one we use in this project. Section 3.7 concludes the chapter.

In addition to the specific citations in the text, Goodfellow et al. (2016), Leskovec
et al. (2014), Jurafsky and Martin (2008) and the online courses “Machine Learning”1 by
Andrew Ng and “Neural Networks for Machine Learning”2 by Geoffrey Hinton have been
used as a general reference for writing this chapter.

3.1 Basic concepts in supervised learning

Following the definition above, the goal of supervised learning is to, given a training set
of m different (x, y) pairs, where x is is the feature vector that characterizes each instance
and y is the correct output that corresponds to it, learn a function to predict the output
y′ of any new, possibly unseen instance x′. Each feature xi and the output y can be
either categorical if its value is taken from a discrete set, or numerical if its value is an
integer or a real number. For the sake of simplicity, in this work we will follow a standard
approach to convert categorical features into numerical ones as follows: for each value that
a categorical feature can take, we will create a new numeric feature that will be set to 1
for instances that took its associated value for the original categorical feature, and 0 for
the rest. For instance, for a categorical feature corresponding to the set {noun, adjective,
verb, adverb} we would create 4 new numerical features (one for each value in the set) so

1https://www.coursera.org/learn/machine-learning/
2https://www.coursera.org/course/neuralnets
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that the one corresponding to “noun” would be set to 1 for nouns and 0 for adjectives,
verbs and adverbs, the one corresponding to “adjective” would be set to 1 for adjectives
and 0 for nouns, verbs and adverbs etc. As for the output y, supervised learning problems
whose output is categorical are called classification problems, and those whose output is
numerical are called regression problems. The special case of the former with only two
possible output values is called binary classification.

Needless to say, a good classifier or regressor will be one that gives the best possible
predictions for new instances. For that reason, a test set is usually kept apart from train-
ing and used to evaluate the performance of different systems according to task relevant
measures (e.g. accuracy for classification or mean squared error for regression). During
training, each supervised learning algorithm will learn a model to make such predictions
based on the regularities it observes in the training set. It might therefore seem obvious
that the performance of the model in the training set should improve as the training goes
on. However, it might happen that, as the model learns to perform better in the training
set, it starts considering regularities there that are not such in reality (e.g. due to the sam-
pling noise) and, by doing so, it looses its generalization capacity, yielding to worse results
in the test set. This problem is known as overfitting. The opposite can also happen,
as a model might miss relevant regularities in the training set due to the assumptions it
makes, yielding to worse results not only in the training set, but also in the test set. This
other problem is known as underfitting. Needless to say, a good model should find the
medium term between them. This is called the bias-variance tradeoff, where bias refers
to the error from the assumptions made by the model, and variance refers to the error
from the small fluctuations in the data. By adjusting different parameters of the model
or the training algorithm and seeing its effect in the test set, or by observing the error
in the training and the test sets to decide when to stop the training, a better and better
tradeoff could be found. However, this would not be methodologically acceptable, as there
would be a clear risk to start overfitting the test set itself, so the error on it would not be
representative anymore. For that reason, an additional development or validation set is
typically used for that. This validation set is kept apart from the training set and used
to tune all these parameters, and it is only after the definitive values for them are chosen
that the test set is used to report the performance of the model.

Another important distinction in machine learning methods is that of online learning
as opposed to batch learning. In offline learning or batch learning, the entire training set
is available from the very beginning and processed at once to create a model. The opposite
approach is online learning, where the training data is not processed altogether, but
becomes available sequentially, so the model keeps adjusting itself to the instances it sees
each time on the fly. This makes it possible to have dynamic models that adjust themselves
to continuously changing environments. For instance, spammers would try to exploit new
attack vectors as the old ones are mitigated, so an online classifier for spam filtering could
adapt itself to detect these new practices. In addition to this, as discussed later in Section
3.5 processing all the data together might not be computationally feasible for very large
training sets like the ones we have for SMT, so online learning is often the most suitable
approach to large scale machine learning.
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3.2 Linear models and the perceptron

Linear models are a family of supervised learning models that take a linear combination
z of the input features

z(x) =
∑
i

wixi + b

and predict their output as a function of this linear combination:

h(x) = f(z(x))

In the formulation above, h(x) refers to the prediction or hypothesis made by the model
for the input x, wi denotes the weight associated to each input feature xi, and b is the so
called bias term. An alternative way of dealing with this bias term is to take an additional
input feature x0 that will always have a constant value of 1, and treat the bias term as its
corresponding weight w0. In any case, the parameters of a linear model are precisely the
weights and the bias term, and the training will thus consist in finding the optimal values
for them based on the instances in the training set.

Depending on the output function, the optimization objective and the training proce-
dure, different linear models are defined. The perceptron is arguably the simplest one
that one could conceive, and we will therefore use it for illustrative purposes throughout
this section. The perceptron is used for binary classification, and its output simply depends
on the sign of the linear combination z:

h(x) =

{
1 z(x) > 0

0 z(x) ≤ 0

In this notation, 1 and 0 are simply the identifiers for the predicted class, so their exact
meaning will depend on the definition of the problem (e.g. 1 might mean true and 0 false).

From the graphical point of view, this is equivalent to drawing a straight line known as
the decision boundary in a 2-dimensional feature space, so that everything that lays in
one side of the line will be predicted to belong to one class and everything that lays in the
other side will be predicted to belong to the other class. For higher dimensional feature
spaces, the straight line is simply generalized to a hyperplane.

Figure 7 shows an example of this for a toy problem where the sex of a person has to
be predicted given their age and the fundamental frequency of their voice (the physical
magnitude associated with the pitch). As it is well known, men have a lower fundamental
frequency than women, but the age is also a relevant factor, as children, for instance, have a
higher fundamental frequency. In this artificial example, both classes are found in different
regions in the training set, and a meaningful decision boundary is accordingly defined.

Needless to say, this decision boundary (that is, the exact straight line to draw) will
be defined by the parameters of the model, which were the weights and the bias term. So,
moving from the mathematical formulation to the graphical representation, training the
classifier will consist in finding the straight line that best separates the set of examples in
the training set.
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Figure 7: Example decision boundary for a linearly separable problem

The perceptron learning algorithm provides a very simple training procedure that is
guaranteed to find the decision boundary that perfectly separates both classes in the train-
ing set as long as this decision boundary exists. When that condition holds, as it is the
case of the example in Figure 7, the training data is said to be linearly separable.

For that purpose, the perceptron learning algorithm follows an iterative process. It
treats the bias term as an additional weight as discussed before, and starts with a fixed
weight vector, typically initialized to all zero. It then picks the instances in the training
set one by one, and predicts its class by using the current weight vector. If the predicted
class is 0 and the real class is 1, the feature vector is added to the weight vector; if the
predicted class is 1 and the real class is 0, the feature vector is subtracted from the weight
vector; and if the prediction is correct, the weight vector is kept unchanged.

This surprisingly simple learning algorithm is guaranteed to converge as long as the
training set is linearly separable. In other words, the perceptron learning algorithm is
guaranteed to eventually find the straight line that separates the classes in the training set
as long as this straight line exists.

3.3 Logistic regression and gradient descent

As discussed in Section 3.2, the perceptron is a very simple model for binary classification,
but also a rather limited one. One way to build more powerful models is to use a more
sophisticated output function in a linear model. In the case of logistic regression, the
so called sigmoid or logistic function is used for that purpose:

h(x) =
1

1 + e−z(x)
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Figure 8: The sigmoid or logistic function

In this case, the hypothesis h(x) is interpreted as the probability of a given case be-
longing to the positive class 1, that is, logistic regression will predict p(1|x) = h(x) and
p(0|x) = 1−h(x). This is in contrast to what perceptrons do, which make a hard prediction
instead of giving a probability distribution.

In order to understand why it is possible to interpret the output of logistic regression
as a probability, is should be observed that the sigmoid function is a smooth curve that
always takes a value between 0 and 1 as shown in Figure 8.

When training a logistic regression classifier, the so called conditional maximum
likelihood estimation is used. In other words, logistic regression tries to find the set of
weights ŵ that maximizes the probability of observing the classes in the training set given
their corresponding features. This can be formulated as follows, where y(i) stands for the
observed class of the ith training instance, x(i) for its corresponding feature vector, and
p(y(i)|x(i)) is the probability predicted by the classifier for this particular instance and the
weight vector w:

ŵ = arg max
w

m∏
i=1

p(y(i)|x(i))

Taking advantage of the properties of the logarithm and the fact that, in binary clas-
sification, the observed class y(i) will either be 0 or 1, this can be reformulated as follows:

ŵ = arg max
w

m∏
i=1

p(y(i)|x(i)) = arg max
w

m∑
i=1

log p(y(i)|x(i))

= arg max
w

m∑
i=1

(
y(i) log h

(
x(i)
)

+
(
1− y(i)

)
log
(
1− h

(
x(i)
)))

= arg min
w

−
m∑
i=1

(
y(i) log h

(
x(i)
)

+
(
1− y(i)

)
log
(
1− h

(
x(i)
)))

Based on this last expression, an error function E can be defined so that ŵ =
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arg min
w

E:

E = −
m∑
i=1

(
y(i) log h

(
x(i)
)

+
(
1− y(i)

)
log
(
1− h

(
x(i)
)))

Intuitively, E measures the error made by the model when predicting the class of the
instances in the training set, and the goal of the training algorithm is thus to find the set
of weights that minimize this error. In order to prevent the overfitting problem described
in Section 3.1, a regularization term R(w) that depends on the weight vector is often
added to the error function. The purpose of regularization is to penalize extreme values
for the weights that might make the model fit better to the training set but are likely to
harm its generalization ability. The so called L1 and L2 regularization are the most widely
used ones, which are defined as follows:

RL1(w) =
∑
i

|wi|

RL2(w) =
∑
i

w2
i

Independently to the exact function used, the regularization term is added to the error
seen above according to some factor λ, so the error function is redefined as follows:

E = −
m∑
i=1

(
y(i) log h

(
x(i)
)

+
(
1− y(i)

)
log
(
1− h

(
x(i)
)))

+ λR(w)

No matter if regularization is used or not and what function is used for it, training a
logistic regression classifier is hence reduced to solving the particular optimization problem
of minimizing this error function. Even though it is mathematically possible to calculate
the optimal solution analytically, this approach does not scale well, so a numerical method
is typically used instead.

The gradient descent algorithm is one of the most commonly used ones. It follows
an iterative process were, at each step, each weight is updated depending on the derivative
of the error function with respect to it according to a learning rate ε. These partial
derivatives correspond to the following expression in the case of logistic regression:

∂E

∂wj
= −

m∑
i=1

(
y(i) − h

(
x(i)
))
x

(i)
j

This way, gradient descent will update the weights at each iteration as follows:

∆wj = −ε ∂E
∂wj

=
m∑
i=1

ε
(
y(i) − h

(
x(i)
))
x

(i)
j

Under certain general assumptions (most notably, the function to optimize has to be
convex), this algorithm is guaranteed to converge to a local optimum for a small enough
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Figure 9: Visualization of gradient descent in a 2-dimensional weight space

learning rate. In the case of logistic regression, there is a single minimum, so the optimal
solution found by gradient descent will also be the global optimum.

The behavior of gradient descent is better understood if the error surface is graphically
represented in the weight space as shown in Figure 9. Once again, the example corresponds
to a 2-dimensional weight space so that it can be properly visualized, but this can be
generalized to a hyperplane for higher dimensional spaces. As discussed before, the goal
of the training phase is to find the minimum of this error function or, from the graphical
point of view, the coordinates defined by the weights for which the error is minimum. The
gradient descent algorithm starts from a random point in this error surface and, in each
iteration, moves in small steps in the direction of steepest descent. Considering that the
derivative is geometrically interpreted as the slope of a curve at a given point, it is easy
to establish the relation between the mathematical formulation above and the geometrical
interpretation here.

3.4 Addressing the limitations of linear models

The linearity assumption that is inherent to the very same definition of linear models can
pose an important limitation on what these models can learn. Consider, for instance, the
example in Figure 10, which shows another possible training set for the toy problem of
predicting the sex of a person discussed earlier. It can be clearly seen that, in this other
configuration, it is not possible to draw a straight line that correctly separates both classes
in the training set. In other words, the training set is not linearly separable, so linear
classifiers like the perceptron or logistic regression discussed earlier will perform poorly.
Nevertheless, it is obvious that the problem here is not in the training set itself, as it would
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Figure 10: Example decision boundary for a problem that is not linearly separable

be perfectly possible to correctly separate both classes with a curve as shown in Figure 10.
Therefore, it is the linear models themselves that are not expressive or powerful enough to
learn to discriminate between the two classes in this case.

In this section, some common approaches to address these limitations are described.
Section 3.4.1 first discusses feature engineering, the approach of manually designing addi-
tional features to improve the performance of machine learning algorithms, which we use
in this project for the phrase translation probability scoring logistic regression model we
propose. Support vector machines are then introduced in Section 3.4.2, which are linear
models that are nevertheless able to learn non-linear decision boundaries in the original
feature space thanks to the kernel trick. Finally, Section 3.4.3 discusses artificial neural
networks and deep learning, which can be seen as a non-linear extension of the models seen
so far and are typically used to train word embeddings, presented later in Section 4.1 and
extensively used throughout the rest of the project.

3.4.1 Feature engineering

Feature engineering is the process of manually building a right set of features so that a
given learning algorithm can model the problem as good as possible. For instance, for the
example shown in Figure 10 one could create new features to make the problem linearly
separable and then apply a linear classifier like logistic regression or the perceptron. This
has traditionally been one of the main focuses in applied machine learning to the extent
that the amount of data available and the feature set used have often been considered the
key for achieving good results, more than the learning algorithm itself.

A typical approach would be to use domain knowledge to design a set of features that
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are believed to be good for modeling the problem. Although this might look to go against
the automation nature of machine learning, it should be noted that machine learning is
most useful when we are not able to come up with an algorithm to explicitly solve a
particular problem, which does not necessarily mean that we know nothing about how to
solve the problem. For instance, it would be extremely difficult for us to design a step-by-
step method that reliably tells whether a given email message is spam or not, but we could
easily think of features that could be useful for this task (e.g. the presence of certain words,
the email address of the sender, whether the email contains the name of the receiver...).

However, this is not limited in any case to designing features that add new and relevant
information based on domain knowledge. For instance, one could create a new feature by
simply scaling an existing one (e.g. taking its logarithm or square, centering it around
0...). In spite of its simplicity, most learning algorithms greatly benefit from this feature
normalization.

More interestingly, one could also create new features that combine existing ones (e.g.
taking the product of two existing features). These interaction features are particularly
relevant for linear models, as they only have a fixed weight for each feature that is indepen-
dent from the rest. The underlying issue becomes obvious with the paradigmatic example
of the XOR problem. The XOR logical operator takes two binary arguments and returns 0
if both are equal (i.e. 0, 0 or 1, 1) and 1 if both are different (i.e. 0, 1 or 1, 0). As proved by
Minsky and Papert (1969), it can be easily seen that this frustratingly simple problem is
not linearly separable, and linear models therefore fail to properly model it. This happens
because the output of XOR is given by the relationship between the two input features
and, as said before, linear models can only weight them independently. However, this can
be easily solved by adding an interaction feature for the original input features.

Needless to say, these interaction features do not necessarily have to be manually de-
signed, as one could for instance take every quadratic or cubic combination of all the input
features. However, depending on the number of features this can easily lead to a combina-
torial explosion, known as feature explosion, increasing the computational complexity
of training the model and greatly increasing the risk of overfitting.

3.4.2 Support vector machines

At the most basic level, support vector machines (SVM) are linear models known as
large margin classifiers, since they choose the linear decision boundary that maximizes
the margin between the instances of both classes in the training set. For that purpose,
they use exactly the same output function as perceptrons:

h(x) =

{
1 z(x) > 0

0 z(x) ≤ 0

and train the model to minimize the following error function, which is known as the hinge
loss:

E =
m∑
i=1

max
(
0, 1− y(i)z(x(i)) +

(
1− y(i)

)
z(x(i))

)
+ λR(w)
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The intuition behind the hinge loss is that it does not only penalize wrong predictions,
but also pushes z(x) to large values for correct prediction, as |z(x(i))| ≥ 1 must hold for
the error of the ith instance to be 0 even if its class is correctly predicted.

However, the real power of SVM comes with the so called kernel trick, which is
a computationally efficient way that SVM allows to create implicit features based on the
distance to the training instances. For that purpose, different kernel functions with different
parameters are defined, as it is the case of polynomial kernels or the Gaussian radial basis
function kernel. A linear kernel corresponds to the basic model discussed above. This
way, thanks to the kernel trick the data is projected to a higher-dimensional feature space
and SVM behaves as a linear model there, making it possible to learn non-linear decision
boundaries in the original feature space. For this reason, SVM is often said to be the most
powerful black box classifier.

3.4.3 Artificial neural networks and deep learning

In spite of their simplicity and limitations, it is interesting to see how similar linear models
are from the basic building blocks of our brain: neurons. At the most basic level, a neuron
receives some electrical input from the dendritic tree and, when this input is high enough,
it activates its output through the axon. Even though the actual biochemical process is
far more complex, linear models can therefore be taken as ideal models of neurons. When
doing so, the sigmoid function is often used as the activation function just as seen in
logistic regression. But, needless to say, our intelligence does not come from what neurons
can do on their own but what they can do when connected together. This can be taken as
inspiration to connect these ideal models of neurons to form more complex networks, and
this is precisely how artificial neural networks are defined.

More precisely, an artificial neural network (ANN) is formed by a set of units
connected with some weights that each take some input features, calculate a linear com-
bination of them according to the weights, apply an activation function, and output this
value. Depending on the schema that these connections follow, different ANN architectures
are defined. For instance, feedforward neural networks, which are the most simple and
also one of the most widely used ones, are formed by an input layer, an output layer, and
one or several hidden layers that are each connected to units in subsequent layers (i.e.
without forming directed cycles). The graph in Figure 11 illustrates this basic schema for
a network with a single hidden layer.

As it can be seen, the input and the output layers are not new from linear models.
In fact, a network without any hidden unit would be formed by a single neuron, which
is indeed a linear model. As for the hidden layers, a way of seeing them is that hidden
units are linear models that each learn a new feature that will then be useful to make the
final prediction. For instance, in our previous example where we try to predict the sex of a
person given their age and the fundamental frequency of their voice, a hidden unit might
learn to output whether the input corresponds to a child or not, which might then be useful
to predict the sex of the person together with other features. However, in contrast with
the idea of feature engineering developed in Section 3.4.1, these new features are learned
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Figure 11: A feedforward neural network with a single hidden layer

automatically by the network, and that is precisely why they are called hidden, as we do
not really control what they are doing. Thanks to this flexibility, ANNs are able to learn
non-linear decision boundaries. For instance, for the training set in Figure 10, for which
linear models could not find an appropriate decision boundary, an ANN might be able to
learn a decision boundary like the one in the chart.

At the same time, by adding more than one hidden layer to the network, it would be
able to learn more and more abstract (or, in other words, deeper) representations of the
input data that could then be helpful to correctly predict the output, and this is how
deep neural networks (DNN) are defined. DNNs belong to the deep learning branch
of machine learning, a broader term that encompasses other approaches that make use of
multiple processing layers to obtain high-level abstractions of the input data (LeCun et al.,
2015).

No matter what architecture is used, though, an ANN is parametrized by its weight
just as linear models (there is also the bias term for each unit but, as seen before, those
can be seen as additional weights for a constant one-value input). Therefore, training will
again consist in finding the right values of these weights for the given training set. For
that purpose, an error function E is defined on the training set according to the desired
output, and the gradient descent algorithm is then typically used to iteratively find the
optimal set of weights that minimize this error function, just as seen for logistic regression
in Section 3.3. The update value for each weight in each iteration of gradient descent will
again be given by the derivative of the error function with respect to it multiplied by the
learning rate ε:

∆wij = −ε ∂E
∂wij

In order to calculate that value, we will first calculate the derivative of the error function
with respect to the total input received by the unit zj using the chaining rule and assuming
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a sigmoid activation function:

∂E

∂zj
=
∂yj
∂zj

∂E

∂yj
= yj (1− yj)

∂E

∂yj

Having done that, the chaining rule can again be applied to calculate the derivative of
the error function with respect to the weight wij:

∂E

∂wij
=

∂zj
∂wij

∂E

∂zj
= yi

∂E

∂zj

This way, we obtain the derivative of the error function with respect to the weights in
the last layer, which we can use to update them. However, this is not directly applicable
to the weights in previous layers since, in the case of a hidden unit, its expected output is
not known a priori (that is precisely why they are called hidden). However, making use of
the chaining rule, it is possible to calculate the derivative of the error function with respect
to the output of each of the units in the previous layer:

∂E

∂yi
=
∑
j

∂zj
∂yi

∂E

∂zj
=
∑
j

wij
∂E

∂zj

Based on that, the same procedure seen before for the weights in the last layer can be
applied to obtain the update value for the ones in the previous layer. All in all, starting
with the derivative of the error function with respect to the output of the ANN the error
is backward propagated to the units in the previous layers. For that reason, this method
is known as the backpropagation algorithm.

From the graphical viewpoint, the behavior of this procedure is essentially the same as
the one discussed for logistic regression in Section 3.3, with the difference that the error
surface has a more complex shape and will generally have more than one local minima.
The training will start in a random point in the weight space, and will advance step by
step in the direction of steepest descent until it reaches one of these minima.

3.5 Large scale online learning

In principle, every technique discussed throughout the chapter can be applied regardless of
how big the training set is. In fact, having a large dataset is always desirable, as it reduces
the sampling noise and is therefore helpful to improve the variance of a model without
affecting its bias (or, in other words, it reduces the risk of overfitting without affecting the
generalization capacity of the model).

However, several practical issues arise when trying to apply the techniques discussed so
far in a very large scale. First, the variant of gradient descent presented here, sometimes
referred to as batch gradient descent, needs to process the entire dataset to compute
the update value for each weight, which has to be repeated many many times until it
converges. When the training set is very big, this is likely to be too slow in practice. An
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alternative approach, known as stochastic gradient descent, is to compute the update
for a single or a fixed number of training instances each time. The latter are known
as mini-batches, so this variant is also called mini-batch gradient descent. Updates in
stochastic gradient descent are more unstable, so the learning rate is usually decreased with
time but, since they are also performed much more often, the training tends to converge
much faster. Moreover, thanks to this variability the algorithm can potentially escape poor
local optima at the beginning.

Another important aspect of stochastic gradient descent is that it is an online learning
algorithm. This is relevant because, in many real large scale machine learning settings,
such as the scam filtering discussed before, new training data becomes available constantly,
and it is useful to have a model that keeps adapting to it. What is more, training instances
can even been thrown away after they are processed saving storage space. This becomes
relevant in the so called big data era where, in many real situations, the bottleneck is not
the availability of the data but the capacity to process it.

Another issue related to large scale machine learning is that of feature sparsity and
feature vectorization. In many scenarios, in particular in those where categorical fea-
tures are converted into numerical features as discussed in Section 3.1, the feature set tends
to be very large, and also very sparse (i.e. most of the features are 0 for a given instance).
This is very common in natural language processing, where each instance (e.g. a sentence
or a phrase) might be characterized by the words or bigrams it contains, which will only be
a few out of the entire vocabulary. This poses a challenge first for vectorizing the features
(i.e. organizing them into an ordered vector associated with the weight vector) and also for
efficiently processing them, as it would be a waste of resources to traverse all the possible
features when only a few of them take a non-zero value. In fact, in online learning scenar-
ios the feature set might even be unbounded, as previously unseen words or bigrams are
likely to occur in new training instances, for example. In order to overcome these issues,
the so called hashing trick is often used, which converts any feature identifier, such as
a word or a bigram, into an integer by means of a hashing function, which can then be
used to access the weight that would correspond to it. When doing so, it is important to
consider the range of the hashing function, as too big values would unnecessarily increase
the space requirements and too small values could cause collisions among the features,
harming performance.

Finally, parallelization is usually another desirable feature in large scale machine learn-
ing for scalability over big clusters. However, unlike batch gradient descent, in which
training instances can easily be processed in parallel following for instance the standard
MapReduce model, stochastic gradient descent is not easy to parallelize, as the weights
have to be updated after each training instance is processed. An alternative is to run
stochastic gradient descent in different nodes independently distributing the input data
among them, and then merge these updates periodically using a tree-like structure over
the nodes for efficient communication.
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3.6 Vowpal Wabbit

Vowpal Wabbit is an efficient online learning system. Its development is led by John
Langford, currently under Microsoft Research and previously under Yahoo! Research. It
is written in C++ and licensed under the 3-clause BSD license, and it can be used through
its command line interface or as a C++ library with bindings for Python.

Vowpal Wabbit’s main strength is its efficiency along with its flexibility. It is primarily
used to work with linear models and, by specifying different loss functions, linear regressors,
logistic regression classifiers and SVMs with a linear kernel can be built. In addition to
that, Vowpal Wabbit also supports feedforward neural networks with one hidden layer,
online kernel SVM (an adaptation of the kernel trick for online learning), Latent Dirichlet
Allocation, and more. It uses stochastic gradient descent with a decay learning rate as its
default optimization algorithm, but it also supports other methods not covered here like
BFGS and conjugate gradient.

Vowpal Wabbit also stands out for its scalability. It makes use of the hashing trick
discussed in Section 3.5 for feature vectorization, and it offers an out-of-core implementa-
tion (i.e. it does not need to load all the data into memory at once in order to process
it). Thanks to this, Vowpal Wabbit’s memory usage is completely independent from the
dataset used and its size, and depends primarily on the range selected for the hashing func-
tion. Finally, Vowpal Wabbit also offers parallel training following the schema discussed
in Section 3.5 with support for Apache Hadoop.

3.7 Conclusions

In this chapter, we have presented the foundations of supervised machine learning with a
focus on linear models. These linear models are often used for large scale machine learning,
where the massive number of features and training instances typically make up for their
modeling limitations and scalability becomes the key factor. Given the big size of the
bilingual data used to train SMT systems, we also approach the dynamic phrase transla-
tion probability model we propose as a large scale machine learning problem, and adopt
logistic regression with online learning, stochastic gradient descent, parallel training and
the hashing trick. For that purpose, we use Vowpal Wabbit, an efficient, feature rich online
learning system that is widely used for large scale machine learning. However, we have
seen that linear models have important limitations, and discussed different approaches to
overcome them. Among them, we use feature engineering for the dynamic phrase trans-
lation probability model we propose, whereas artificial neural networks are used to train
word embeddings, presented next in Section 4.1 and extensively used throughout the rest
of the project.
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4 Distributional semantics

The distributional hypothesis states that the meaning of each word in a language is defined
by its usage and can therefore be characterized by the words it is generally surrounded
by (Harris, 1954; Firth, 1957). Based on this, distributional semantics attempts to build
abstract representations of words based on their usage in a large corpus. These representa-
tions have a direct application in several computational semantics tasks such as semantic
textual similarity (STS) (Agirre et al., 2015), but they have also been applied to improve
the performance of many other natural language processing tools.

One approach to distributional semantics that has attracted a lot of attention in the
last decade, discussed in Section 4.1, is to create dense, low-dimensional vector represen-
tations of words, which are known as word embeddings. Word clustering, presented in
Section 4.2, is another approach that groups words in discrete classes according to their
meaning. There have also been attempts to apply distributional semantics in cross-lingual
settings. Section 4.3 discusses bilingual word embeddings, which attempt to bring these
continuous representations of words in two or more languages to a shared vector space.
Finally, Section 4.4 presents different approaches proposed in the literature to apply distri-
butional semantics to improve machine translation performance, and Section 4.5 concludes
the chapter.

4.1 Monolingual word embeddings

Word embeddings are dense, low-dimensional representations of words in a continuous
vector space distributed in some meaningful way from the semantic point of view. In
particular, the distance (e.g. the euclidean distance or the cosine distance) between the
embeddings of two given words should typically correlate with their semantic similarity.
This is regarded as an effective way to address the sparsity problem in natural language
processing, as most systems traditionally treat words as atomic units and therefore have
trouble to properly model phenomena that is not explicitly present in the training data.

Many techniques have been proposed to create such word embeddings, which have
been broadly classified into two main families: count models and predict models (Baroni
et al., 2014). Count models compute statistics of the frequency each word co-occurs
with its neighbors over a large corpus, and then reduce these counts to a dense, low-
dimensional vector. Predict models follow an alternative approach and use supervised
learning techniques to predict a word given its context or the other way around, and take
the underlying representation that the model creates for each word.

Early attempts to build vector space word models belong primarily to the first group
and date back to late 1980s. One of the most influential ones was Latent Semantic
Analysis (LSA), also referred to as Latent Semantic Indexing (LSI) in the field of infor-
mation retrieval (Dumais et al., 1988; Deerwester et al., 1990). LSA starts with a sparse
matrix, known as the occurrence matrix, where rows corresponds to words, columns cor-
responds to documents and each cell contains some weight for the frequency in which the
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word in question occurs in that document (e.g. simple counts or its tf-idf value). Once
the occurrence matrix is built, dimensionality reduction techniques and, typically, singular
value decomposition (SVD) is used to find a low-rank approximation of the occurrence ma-
trix so that the number of columns is reduced to some predefined value (e.g. 100 or 300)
while minimizing the reconstruction error. The rows in the resulting matrix can thus be
taken as low-dimensional vector representations of their corresponding words. This basic
technique later evolved giving place to more sophisticated models like Probabilistic Latent
Semantic Analysis (PLSA) (Hofmann, 1999) and Latent Dirichlet Allocation (LDA) (Blei
et al., 2003).

As for the family of predict models, most techniques in this group are based on ANNs,
previously discussed in Section 3.4.3. The first proposals to use ANNs to build continuous
vector representations for words coincide with the development of LSA in the late 1980s
(Hinton, 1986; Rumelhart et al., 1986), but did not attract as much attention. With the
revived interest in ANNs in the last decade and its application in NLP, new and influential
models were developed and successfully applied in a variety of tasks (Bengio et al., 2003;
Collobert and Weston, 2008; Turian et al., 2010; Huang et al., 2012). However, it is the work
by Mikolov et al. (2013a,c) and the public release of the word2vec software implementing
their model that is considered a breakthrough in this regard. Unlike previous models,
its efficiency made it possible to learn high quality word embeddings from a billion word
corpus in a matter of hours, achieving very good results.

This work does not actually develop a single architecture but two: continuous bag-
of-words (CBOW) and skip-gram, which are illustrated in Figure 12. Both models are
similar in that they keep two vector representations for each word, one for when it is the
central word and another one for when it is a context word, which can be seen as weights
that connect the input layer to the hidden layer and the hidden layer to the output layer
in a shallow feedforward neural network (i.e. each word vector would correspond to the
weights that connect its corresponding input or output unit to the hidden layer). Based
on this, CBOW tries to predict words given their neighbors in a fixed window, that is,
the average of the context word vectors is used to predict the central word. Skip-gram
follows just the opposite approach and tries to predict surrounding words in a fixed window
given the central word, that is, the central word vector is used to predict each context word
independently. Once the training is done, the context word vectors are simply discarded
and the central word vectors are taken as word embeddings. The authors argue that CBOW
offers faster training times, while skip-gram learns better representations for infrequent
words.

As for the training itself, computing the cost of each instance is very expensive in the
original formulation, as calculating the probability of a word given its context or vice versa
takes linear time with respect to the vocabulary size. In order to address this issue, the
initial approach in Mikolov et al. (2013a) used hierarchical softmax (Morin and Bengio,
2005), representing the vocabulary as a Huffman tree and thus reducing the complexity
of computing the cost of each instance to logarithmic time with respect to the vocabulary
size. The subsequent work in Mikolov et al. (2013c) proposed a simpler alternative called
negative sampling, which is itself a simplification of the noise contrastive estimation
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Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R × 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)−vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5

Figure 12: The CBOW and skip-gram models (Mikolov et al., 2013a)

technique proposed in Gutmann and Hyvärinen (2012). Negative sampling simply tries
to maximize the probability assigned to the correct word to predict while minimizing the
probability assigned to a number of randomly selected words each time. These random
words are known as negative samples, which gives the name to the method. In any case,
both hierarchical softmax and negative sampling make use of stochastic gradient descent
and the backpropagation algorithm discussed in Section 3.4.3 for training. In addition
to that, Mikolov et al. (2013c) also introduced a subsampling for frequent words,
reducing the weight of words that occur very frequently in the training corpus (e.g. “the”,
“of”, “in”), which are presumed to provide less information than rare words, by discarding
words according to some probability that depends on their frequency and a parameter of
the model.

The cosine similarity between embeddings is typically used to get a semantic similarity
measure of the words they represent, although the Euclidean distance has also been used.
The cosine similarity corresponds to the cosine of the angle between the given vectors v
and w, and is typically computed taking their normalized dot product

cos(v, w) =
v · w
‖v‖‖w‖

where ‖ · ‖ denotes the Euclidean norm. However, this is not the only interesting property
that the word embeddings learned this way have, as performing simple arithmetic opera-
tions over them also gives surprisingly meaningful results. In particular, these embeddings
have shown to be very effective for making analogies, both at the syntactic and seman-
tic level. For example, vec(“biggest”) − vec(“big”) + vec(“small”) ≈ vec(“smallest”)
(i.e. the resulting vector is very close to the word embedding of “smallest”, typically
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more close than to any other as measured by cosine similarity), and vec(“France”) −
vec(“Paris”) + vec(“Germany”) ≈ vec(“Berlin”) (Mikolov et al., 2013a). Moreover, simple
addition of vectors have also shown to work reasonably well. For instance, vec(“Czech”) +
vec(“currency”) ≈ vec(“koruna”), and vec(“Vietnam”) + vec(“capital”) ≈ vec(“Hanoi”)
(Mikolov et al., 2013c). Even though these results might look quite surprising at first,
some authors have given insight about why this word vector arithmetic works, suggesting
further improvements for it (Levy and Goldberg, 2014a).

Finally, even though count models and predict models have been traditionally seen as
two opposite approaches, it has been recently shown, both theoretically and empirically,
that the optimization objective of these last neural predict models can be roughly expressed
in terms of a traditional count model, so both approaches would mainly differ in the
computational method to build the same underlying model. This way, Levy and Goldberg
(2014b) show that the skip-gram model trained with negative sampling is equivalent to
performing an implicit factorization of an occurrence matrix whose cells are the positive
pointwise mutual information (PMI) of their corresponding word and context pairs, shifted
by a global constant.

4.2 Word clustering

Word clustering consists in grouping words together in such a way that words that belong
to the same group or class (known as cluster) are similar to each other in some syntactic
and/or semantic sense. For instance, a good clustering would group words like “Germany”,
“Italy”, “Russia” and “Ireland” into one class and words like “pig”, “dog”, “cow” and
“horse” into another different class. These word clustering methods are mostly based on
the distributional hypothesis, as they try to group words that are likely to occur in similar
contexts.

This section discusses three of the most relevant word clustering methods, which have
also been used in this project. Section 4.2.1 describes a classical clustering approach
known as Brown clustering or IBM clustering. Section 4.2.2 presents the clustering method
proposed in Clark (2003), which also incorporates morphological information. Finally,
Section 4.2.3 discusses a simple approach for obtaining clusters from word embeddings.

4.2.1 Brown clustering

Brown clustering (Brown et al., 1992), also known as IBM clustering, is a hard agglomera-
tive method for word clustering. It was originally proposed as part of a class-based n-gram
model, where the probability of words is based on their respective clusters to address the
sparsity problem of the classical n-gram models discussed in Section 2.3, although it can
also be used for other tasks apart from language modeling. This way, the clustering is rep-
resented by a function π that assigns a class c ∈ C to any given word w ∈ V , |C| � |V |,
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and a bigram language model is defined according to it:

P (w1, . . . , wm; π) =
m∏
i=1

P (wi|π(wi))P (π(wi)|π(wi−1))

where relative frequency estimates are used for the probabilities:

P (wi|ci) =
count(wi)

count(ci)

P (ci|ci−1) =
count(ci−1, ci)

count(ci−1)

Based on this, the quality of a clustering π is defined in terms of the probability it
assigns to the training corpus. This meets the intuition of maximum likelihood estimation,
as the best clustering according to this definition would also be the one that maximum
likelihood estimation would choose. More concretely, the logarithm of the above probability
is used normalized by the length of the text (Liang, 2005):

Quality(π) =
1

m
logP (w1, . . . , wm; π)

=
1

m

m∑
i=1

log [P (wi|π(wi))P (π(wi)|π(wi−1))]

=
∑
w,w′

count(w,w′)

m
log (P (w′|π(w′))P (π(w′)|π(w)))

=
∑
w,w′

count(w,w′)

m
log

count(w′)

count(π(w′))

count(π(w), π(w′))

count(π(w))

=
∑
w,w′

count(w,w′)

m
log

count(w′)

m
+
∑
w,w′

count(w,w′)

m
log

m count(π(w), π(w′))

count(π(w)) count(π(w′))

=
∑
w′

count(w′)

m
log

count(w′)

m
+
∑
c,c′

count(c, c′)

m
log

m count(c, c′)

count(c) count(c′)

Since, using frequency estimates as stated before, P (w) = count(w)
m

, P (c) = count(c)
m

and

P (c, c′) = count(c,c′)
m

, this can be rewritten as follows:

Quality(π) =
∑
w

P (w) logP (w) +
∑
c,c′

P (c, c′) log
P (c, c′)

P (c)P (c′)
= −H + I(π)

where I(π) is the mutual information between adjacent clusters and H is the entropy of
the word distribution.

This way, given that the entropy of the word distribution is fixed for the training corpus,
the optimal clustering will be that maximizing the mutual information between adjacent
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Figure 13: An example dendrogram produced by Brown clustering (Šuster, 2013)

clusters. Since it is computationally unfeasible to perform an exhaustive search, Brown
et al. (1992) propose a greedy heuristic that starts with |V | clusters (one per word) and
iteratively merges them until obtaining the desired amount of clusters. More concretely,
each iteration considers every possible cluster pair and merges the one for which the loss
in the mutual information is the least. A naive implementation of this has a complexity of
O(|V |5), which Brown et al. (1992) are able to reduce to O(|V |3) using some optimizations.

This greedy algorithm is a form of hierarchical clustering, so its output can also be seen
as a binary tree where nodes correspond to the merges, commonly known as dendrogram.
Thanks to this, the desired number of clusters can be obtained by cutting the tree at
the appropriate level, without the need to rerun the algorithm. Moreover, each word is
uniquely identified by its path in the tree, which can be expressed using a straightforward
binary notation, and prefixes of these paths can also be used as features in different tasks.
An example illustration of all this is given in Figure 13.

4.2.2 Clark clustering

Clark clustering (Clark, 2003) incorporates morphological evidence in addition to the dis-
tributional evidence into the clustering process. This is aimed to improve the clustering of
words with very occurrences in the training corpus, in particular with morphologically rich
languages in mind, and it was originally motivated for part of speech induction, although
it can also be applied for other tasks.

The basic clustering model is very similar to that of Brown clustering in that it is also
formalized as a class-based bigram language model and the algorithm tries to find the class
assignment that maximizes the probability of the training corpus. However, instead of
the greedy optimization method of Brown et al. (1992), Clark (2003) uses the exchange
algorithm proposed by Martin et al. (1998), which starts with an initial clustering with the
desired number of classes and iteratively improves it by moving each word from its current
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cluster to the one that gives the maximum increase in likelihood, if any.
Based on this basic model, Clark clustering introduces an additional prior probability

for the partition π as follows:

P (π) =
∏
c∈C

∏
π(w)=c

αcPc(w)

In the above formulation, Pc is a character based model for each cluster c, which Clark
clustering models through HMM, and Pc(w) thus denotes the probability of the word w
to belong to the class c according to its HMM model. The purpose of this is to introduce
a bias that pushes morphologically similar words to the same cluster. For instance, the
HMM model of a given class might assign high probabilities to words ending in “ly” or
“ing”, pushing those words that match these patterns, which are likely to be similar in
morphological terms (in this case, adverbs derived from adjectives and present partici-
ples, respectively), into that particular cluster. In addition to that, αc denotes the prior
probability of each cluster c, which is estimated by dividing the number of different words
in that cluster by the size of the vocabulary. This pushes rare words to clusters with a
large number of different words, matching the intuition that a word with very few occur-
rences is more likely to belong to an open class like proper names than to a close class like
prepositions.

4.2.3 Word embedding clustering

Given that, as discussed in Section 4.1, distances between word embeddings correlate with
semantic similarity, any clustering algorithm can be applied over them to obtain meaningful
word clusters. A straightforward approach, integrated in the word2vec package itself, is to
use the well known k -means algorithm for that purpose. k -means (MacQueen et al., 1967)
tries to find the partitioning π that minimizes the sum of the squared distances from each
word to the centroid of its cluster, which is given by∑

c∈C

∑
π(w)=c

‖w − µc‖2

where µc is the centroid of cluster c (i.e. the mean of the word vectors in that cluster).
Finding the optimal partitioning for a given number of clusters is an NP-hard problem,

so heuristic methods are commonly used instead. A standard approach is to iteratively
move all the words to the cluster whose centroid is closest to them, starting with some
random points.

4.3 Bilingual word embeddings

Bilingual word embeddings are dense, low-dimensional representations of words in two
languages in a common vector space. This way, if distances between monolingual word
embeddings correlate with their semantic similarity, bilingual word embeddings attempt
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Figure 14: PCA visualization of two linearly related word spaces trained independently
(Mikolov et al., 2013b)

to bring this to bilingual settings so that distances between embeddings of words in different
languages also correlate with their semantic similarity.

There have been several proposals for this in the recent years, which can be broadly
classified into three groups: bilingual mapping, which learns the embeddings of both
languages independently and then finds a mapping between them, monolingual adapta-
tion, which learns the embeddings of one language independently and then constrains the
training of the other language, and bilingual training, which jointly learns the embed-
dings of both languages in a shared space (Luong et al., 2015). The following subsections
analyze each approach one by one.

4.3.1 Bilingual mapping

Mikolov et al. (2013b) observe that independently trained word embeddings have a similar
distribution for equivalent terms in two languages. An example of this can be seen in Figure
14, where PCA is used to visualize the same set of concepts in two languages, showing that
they both have a similar geometrical arrangement. Based on this, they hypothesize that
there exists a linear mapping between both spaces, and try to find such optimal mapping
from a small bilingual dictionary. More concretely, given a set of word pairs and their
corresponding embeddings {xi, zi}, they try to find the transformation matrix W so that
Wxi approximates zi, minimizing the sum of squared distances between them:

arg min
W

∑
i

‖Wxi − zi‖2

For that purpose, they use the gradient descent algorithm presented in Section 3.3.
However, Xing et al. (2015) argue that, while this optimization objective minimizes

the Euclidean distance, it is the cosine similarity that is commonly used, as it is the case
of Mikolov et al. (2013b) themselves in their evaluation. Based on this, they propose an
alternative approach that first constraints the training of the monolingual word embeddings
to normalize them (i.e. they force the Euclidean norm of the word vectors to be 1) and then
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try to find the transformation matrix W that maximizes the sum of the inner products
between the embedding pairs in the dictionary. When the word vectors are normalized,
this effectively maximizes the average cosine similarity between these embedding pairs.
However, even if the training forces the source vector xi and the target vector zi to be
unit vectors, it would in principle be possible that Wxi is not. In order to overcome this
issue, they constraint W to be an orthogonal matrix, which preserves the inner product
and therefore the Euclidean norm, giving place to the following optimization objective:

arg max
W

∑
i

(Wxi)
T zi s.t. W TW = I

This is a constrained optimization problem and, rather than computing the exact solution,
Xing et al. (2015) look for a simple approximation using a modified version of gradient
descent. More concretely, after computing the gradient and updating the weights at each
iteration, they set W to the orthogonal matrix that is closest it, which can be obtained
by taking the Singular Value Decomposition (SVD) of it and replacing the singular values
with ones.

Finally, while the above methods learn a single transformation from one language to
the other, Faruqui and Dyer (2014) use one linear mapping for each language to project
them to a common space. More concretely, they choose the projection that maximizes
the correlation between the embedding pairs in the bilingual dictionary using canonical
correlation analysis (CCA).

4.3.2 Monolingual adaptation

While the methods in the previous section find a mapping between two independently
trained word vector spaces, an alternative approach is to train the language with the
most resources on its own and then constrain the training of the other language to keep
the bilingual correspondence. The rationale behind that is that not only would the word
embeddings learned this way be in the same vector space, but the language with the most
resources would also guide the training of the less resourced one, obtaining potentially
better word embeddings for it.

Zou et al. (2013) propose one such approach based on a word aligned bilingual corpus
(see Section 2.2). They first train word embeddings in English over a large monolingual
corpus, and initialize the Chinese ones combining them according to the translation proba-
bilities from the word alignment. They then train the Chinese word embeddings in a larger
monolingual corpus starting from this initialization and incorporating an additional term
in the optimization objective that accounts for the translation equivalences given by the
word alignment.

4.3.3 Bilingual training

As seen in the previous sections, there are several methods that learn word embeddings
in both or one of the languages independently and then bring them to a common space
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either by using a linear transformation or constraining the training of the other language.
However, most approaches to build bilingual word embeddings do not do it in separate
steps and try to jointly learn the embeddings of both languages instead, incorporating the
appropriate constraints to ensure the bilingual correspondence.

Just as Zou et al. (2013) do for monolingual adaptation, many methods in this group
make use of word aligned corpora. For instance, Klementiev et al. (2012) use the neural
language model proposed in Bengio et al. (2003) to learn word embeddings in each language,
incorporating an additional regularization term through multitask learning (Cavallanti
et al., 2010) to push word pairs with a high translation probability according to word
alignment to be close to each other. Another interesting approach is the BiSkip model
proposed in Luong et al. (2015), which extends the skip-gram model discussed in Section
4.1 to learn bilingual word embeddings. For that purpose, in addition to training the model
to predict the context of each word in its language, they also predict the context of the
word that is aligned with it in the other language.

An alternative approach proposed in Kočiskỳ et al. (2014) is to jointly learn the word
embeddings in both languages and the alignment itself. For that purpose, they use an
adaptation of the FastAlign alignment model (Dyer et al., 2013), which is itself based on
IBM Model 2 (see Section 2.2), where word translation probabilities are directly computed
over their embeddings. Just as with IBM Models, training is done through expectation
maximization (EM), fixing the alignments to get better translation probabilities (and,
consequently, word embeddings) and fixing the translation probabilities to get better word
alignments at each iteration.

Some other methods are also based on parallel corpora but do not use any word align-
ment at all. Lauly et al. (2014) propose an autoencoder based approach that is trained
to reconstruct the bag-of-words representation of a given sentence and its corresponding
translation in the parallel corpus. Overcoming one of the main limitations of the ap-
proaches discussed so far, the BilBOWA model proposed in Gouws et al. (2014) is able to
train on large monolingual data and only needs a smaller parallel corpus. It is based on the
skip-gram model trained with negative sampling, to which it adds a sampled bag-of-words
bilingual objective as an additional regularization term.

Finally, there are some other methods that do not need any parallel corpora and use a
small bilingual dictionary instead. The BARISTA model proposed in Gouws and Søgaard
(2015) mix the source and the target monolingual corpora, randomly replace words in both
languages according to the bilingual dictionary, and train a CBOW model on it. In addition
to dictionaries with actual translation equivalences like “house” - “casa” (house), they also
experiment with categorical equivalences like “car” - “casa” (both of which are nouns),
learning bilingual word embeddings that are suitable for specific tasks like part-of-speech
tagging or supersense tagging depending on the nature of these equivalences. Similarly,
Wick et al. (2015) also use the CBOW model, to which they add a constraint term to
encourage the embeddings in the bilingual dictionary to be close to each other, over the
concatenation of both monolingual corpora, randomly replacing words in both languages
according to the bilingual dictionary through a method they call artificial code-switching
(ACS). This way, they argue that the CBOW model moves words in each language closer to
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their context, the bilingual constraint moves equivalent words in both languages closer to
each other and ACS moves words in each language closer to the context of their equivalent
word in the other language.

4.4 Distributional semantics for machine translation

Some of the distributional semantic techniques discussed so far have a direct application
in machine translation. For instance, both Brown clustering and Clark clustering are
formulated as class-based n-gram models, so they can be naturally used for language
modeling in SMT (see Section 2.3). Similarly, some predict word embedding models are
based on neural language models, so they can also be used for language modeling.

However, distributional semantics have also been applied in more subtle ways to over-
come some of the limitations of other SMT components. One approach that has attracted
a lot of attention in the last years, discussed in Section 4.4.1, is to add a new weight into
the phrase-table that measures the semantic similarity of each phrase pair. Going one step
further, distributional semantics have also been used to induce new translations of words
or phrases that were not explicitly present in the parallel training data, which we discuss
in Section 4.4.2. Other less-explored uses of continuous word and phrase representation in
SMT include the reordering model (Li et al., 2013) or non-terminals in hierarchical systems
(Wang et al., 2015).

4.4.1 Phrase translation similarity scoring

As discussed in Section 2.3.1, the phrase table of a standard log-linear phrase-based SMT
system typically includes four feature functions: the forward translation probability, the
inverse translation probability, the forward lexical weighting and the inverse lexical weight-
ing. Recently, different methods have been proposed to add an additional score that, in
one way or another, measures the semantic similarity of each phrase pair. This new weight
would in principle be complementary to the standard translation probabilities and lexical
weightings, which are both based on simple co-occurrence statistics, and the SMT system
could therefore benefit from it.

Zou et al. (2013) propose a simple yet effective method for that based on bilingual
word embeddings. First of all, they learn these bilingual word embeddings using their
monolingual adaptation method presented in Section 4.3.2. They then compute the vector
representation of phrases by simply taking the centroid of the embeddings of the words
they contain, and add the cosine similarity between these centroids as a new weight into
the phrase table. Using this technique, they get an improvement of nearly 0.5 BLEU points
in the NIST08 Chinese-English translation task.

A notable limitation of the previous system is that the training of the word embeddings
is independent from the task, composition method and similarity measure used (the cen-
troid cosine similarity). Other methods try to overcome this issue by tightly integrating
all these aspects into their training procedure. This way, Gao et al. (2014) use a feedfor-
ward neural network with two hidden layers that takes the bag-of-words representation of a
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phrase as input and produces a low-dimensional vector representation of the entire phrase
as output. The same ANN is used for both languages so that their phrase embeddings
are in the same vector space, and is trained to maximize the dot product between corre-
sponding phrase pairs, which is then added into the phrase table as an additional weight.
Using this technique, they get an improvement of up to 1.3 BLEU points in the WMT
2012 French-English translation task.

However, the previous method has another important limitation since, by taking the
bag-of-words representation of phrases, it ignores the order of the words in them. For that
reason, other architectures have been proposed to better model the compositionality of
phrases. Among them, the Recursive Autoencoder (RAE) developed by Socher et al. (2011)
has been successfully applied in SMT for different tasks that go beyond phrase translation
similarity scoring, including reordering (Li et al., 2013) and non-terminal representation in
hierarchical SMT (Wang et al., 2015). Proposed originally for sentiment analysis, a RAE
consists of an encoding layer that combines two individual embeddings into a single one
and a decoding layer that reconstructs the original embeddings from the latter. This way,
starting with the word embeddings of a phrase, a greedy algorithm is used to iteratively
combine contiguous embeddings minimizing their reconstruction error, obtaining a single
embedding that represents the entire phrase at the end. In their original work, Socher et al.
(2011) add a softmax layer on top of it for predicting the sentiment label distribution of
the phrase in question, and the word embeddings, encoder, decoder and prediction layers
are jointly trained to minimize both the prediction and regularization errors.

Zhang et al. (2014) adapt this model for phrase translation similarity scoring. For that
purpose, they make use of two RAEs, one for each language, and adapt their prediction
layer to project the phrase embeddings built with them to the other language. For each
entry in the phrase table, they then compute the semantic distance in each direction as
the squared Euclidean distance between the projected phrase embedding in one language
and the phrase embedding in the other, and add these two weights to the phrase table.
In order to train the model, they obtain positive examples from the training corpus by
applying forced decoding and negative examples by taking random words as translations,
and define a max-margin loss function over them. They test their method in Chinese-
English translation, obtaining an average improvement of about one BLEU point over
different test sets and up to 1.7 points in the best case. In a later work, Su et al. (2015)
extend this model to better enforce structural alignment consistency according to word
alignment, obtaining an improvement of about 0.7 BLEU points over the basic model in
Zhang et al. (2014).

Finally, there have been other proposals that try to exploit the same underlying idea
using other ANN architectures. For instance, Cho et al. (2014) develop a RNN encoder-
decoder that consists of two recurrent neural networks (RNN). The encoder RNN encodes
a variable length source phrase into a fixed length vector representation in a way similar
to a RAE, but it does so sequentially instead of following a tree-like structure. However,
rather than encoding both phrases and computing the distance between them, Cho et al.
(2014) use a decoder RNN that generates the target language phrase from the encoded
source language phrase, and use it to compute the probability of the target phrase given
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the source phrase, which they add into the phrase table. At the same time, they use a novel
activation function for both RNNs that adaptively remembers and forgets past history in a
way similar to a long short-term memory (LSTM), but in a much simpler way. Using this
method, they get an improvement of 0.57 BLEU points in the WMT 2014 English-French
translation task, which goes up to 1.34 BLEU points when used together with a neural
language model, showing that both techniques are complementary.

4.4.2 New translation induction

As seen in Section 4.3.1, bilingual mapping methods for word embeddings learn some trans-
formation that projects the source language embeddings into the target language space.
Since the word embeddings in both languages are trained independently, this transforma-
tion can also be applied to words that are missing or have few occurrences in the bilingual
training data as long as they do appear in the monolingual corpus, and it can therefore be
used to induce new translations that were not explicitly seen before.

In their original work, Mikolov et al. (2013b) themselves show the potential of this idea
with the translation induction experiment they do. More concretely, they train English,
Spanish and Czech word embeddings using the CBOW architecture and monolingual data
from WMT 2011. After that, they generate bilingual dictionaries with the 5,000 most
frequent words in them and their translation as given by Google Translate, and use each of
these bilingual dictionaries to learn a transformation matrix between different embedding
spaces with their method. For the subsequent 1,000 most frequent words, they project
their corresponding embeddings into the target language space using the previously learned
transformation matrix, and take the closest word embeddings there as measured by cosine
similarity as their translation. They then compare these induced translations with those
given by Google Translate, obtaining a precision of over 30% for both English-Spanish
directions and over 20% for both English-Czech directions. Moreover, when measuring the
top 5 accuracy instead of the top 1, these percentages increase to over 50% for English-
Spanish and over 40% for English-Czech.

Subsequent works propose improvements for this basic approach and apply them in
end-to-end machine translation. This way, Zhao et al. (2015) use several local linear
projections instead of a single global one as Mikolov et al. (2013b) do, and propose the use
of redundant bit vectors to speed up the retrieval of the nearest neighbors in the target
language space. Moreover, they extend their method from words to phrases by simply
taking the element-wise addition of word embeddings. They then apply this method to
generate new translation rules for an Arabic-English and an Urdu-English phrase-based
SMT system, obtaining an improvement of up to 1.6 and 0.5 BLEU points, respectively.

4.5 Conclusions

In this chapter, we have discussed word embeddings and word clusters, two distributional
semantic techniques that represent words by dense vectors and discrete classes, respectively.
These representations are useful to mitigate the sparsity problem in natural language pro-
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cessing while providing a means to incorporate distributional knowledge acquired from
large monolingual corpora. For that reason, in Chapter 6 we integrate both word embed-
ding and word cluster features in the logistic regression model we propose in Chapter 5 for
dynamic phrase translation probability scoring. Apart from that, we have seen different
approaches to learn bilingual extensions of word embeddings and their application in SMT
through phrase translation similarity scoring and new translation induction. Along these
lines, in Chapter 7 we propose a new framework to learn bilingual word embedding map-
pings and test them on a word translation induction task, and in Chapter 8 we explore the
direct use of these and other bilingual word embeddings for phrase translation similarity
scoring through different metrics.
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5 Logistic regression for dynamic phrase translation

probability modeling

In this chapter, we propose the use of logistic regression for dynamic phrase translation
probability modeling. Our model allows to flexibly define a set of features to characterize
phrase translation candidates, and the probability that the logistic regression classifier
predicts for them is dynamically added into the phrase table. We show that, for the right
set of features, this probability is equivalent to the relative frequency counting estimate
used in phrase-based SMT and, therefore, our model can be seen as a generalization of the
standard translation probabilities that allows to naturally incorporate additional features.

This chapter presents the proposed model together with a basic set of lexical features,
and tests them experimentally in English-Spanish translation. Later in Chapter 6, we
explore the incorporation of distributional semantic features into the model through word
clusters and word embeddings.

This way, we describe our model in Section 5.1, and prove its equivalence with relative
frequency counting in Section 5.2. Section 5.3 discusses our basic feature design, which
comprises source language lexical features, target language lexical features and their com-
bination. Section then 5.4 presents the experiments on English-Spanish translation and
discusses the obtained results. Finally, Section 5.5 concludes the chapter.

The work in this chapter was done in collaboration with researchers in the Institute
of Formal and Applied Linguistics (ÚFAL) at Charles University in Prague, especially
with Aleš Tamchyna, to whom we would like to thank their support and help. More
concretely, our implementation is based on their Moses extension to integrate Vowpal
Wabbit, which is now part of the official Moses release. At the same time, both teams
shared our experimental settings, results and findings. In any case, the formalization
and proof of relative frequency counting equivalence, the implementation of some variants
and features, the experimental framework used and all the experiments presented here
are completely original. At the same time, our work to integrate distributional semantic
features presented in Chapter 6 is also completely original.

5.1 Proposed model

Let fi be a binary feature function that, given a source language phrase f̄ and a target
language phrase ē, yields 1 if the phrase pair (f̄ , ē) has a given property and 0 otherwise.
For instance, we could define a feature function that tells whether ē contains the bigram
“la casa”, or another one that tells if ē contains the word “casa” and f̄ contains the word
“house”.

For a given set of features, we define a logistic regression model to estimate the proba-
bility of a given phrase f̄ being translated as ē as follows (see Section 3.3):

h(f̄ , ē) =
1

1 + e−
∑

i wifi(f̄ ,ē)
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This predicted probability is then added into the log-linear feature combination of a
standard phrase-based SMT system along with the forward and inverse translation proba-
bilities and lexical weightings (see Section 2.3.1), either statically or, in our case, dynami-
cally, which allows to use context dependent features.

However, it might be argued that this integration model is flawed in that it does not
guarantee a true probability distribution over the possible translations of a given phrase.
For that reason, we also consider the variant where the softmax function is used to add a
normalized forward probability into the phrase table:

hsoftmax(f̄ , ē) =
e
∑

i wifi(f̄ ,ē)∑
ē′ e

∑
i wifi(f̄ ,ē′)

The original implementation by ÚFAL researchers, which is the basis of our work,
used this latter integration method. Nevertheless, we think that this model has its own
drawbacks, similar to those of the standard translation probabilities. In particular, if a
phrase has very few entries in the phrase table, this model will tend to predict higher
probabilities for each of them, whereas if a phrase has many different entries, it will tend
to predict lower probabilities. In the most extreme case, for a phrase with only one possible
translation in the phrase table, the model will necessarily predict a probability of 1, no
matter how adequate it is. In other words, it assumes that one, and only one, of the entries
in the phrase table is the correct translation for a given phrase and context, but it is possible
that, in reality, none or several of them are. As a consequence, this integration method
will tend to overestimate the probability of long phrases, which will necessarily have less
occurrences in the training corpus than their corresponding subphrases and are therefore
more likely to miss an appropriate translation for a given context. For that reason, we also
implement the direct integration of the logistic regression probability, which we prefer for
our theoretical discussion here, and test them both later in the experiments in Section 5.4.

In order to train the model, for every occurrence of a phrase f̄ in the training corpus that
is aligned with ē, we create a positive example (f̄ , ē) and all the possible negative examples
(f̄ , ē′) where ē′ 6= ē and there is an entry for (f̄ , ē′) in the phrase table. The original
implementation by ÚFAL researchers does not consider the case where f̄ is unaligned or
its translation ē is missing in the phrase table. However, we consider that, for the direct
integration method discussed above, creating negative examples for these cases could help
to better model the probability of phrases that are not often translated into the target
language (e.g. due to ellipsis), and test both variants in our experiments in Section 5.4.
In either case, the model is trained to find the set of weights ŵ that minimizes the error
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function of logistic regression (see Section 3.3):

ŵ = arg min
w

−
∑
(f̄ ,ē)

(
y(f̄ , ē) log h(f̄ , ē) +

(
1− y(f̄ , ē)

)
log
(
1− h

(
x(i)
)))

= arg min
w

∑
(f̄ ,ē)

(
y(f̄ , ē) log

1

h(f̄ , ē)
+
(
1− y(f̄ , ē)

)
log

1

1− h (x(i))

)

= arg min
w

∑
(f̄ ,ē)

(
y(f̄ , ē) log

(
1 + e−

∑
i wifi(f̄ ,ē)

)
+
(
1− y(f̄ , ē)

)
log

1

1− 1

1+e−
∑

i wifi(f̄ ,ē)

)

= arg min
w

∑
(f̄ ,ē)

(
y(f̄ , ē) log

(
1 + e−

∑
i wifi(f̄ ,ē)

)
+
(
1− y(f̄ , ē)

)
log

1 + e−
∑

i wifi(f̄ ,ē)

e−
∑

i wifi(f̄ ,ē)

)

= arg min
w

∑
(f̄ ,ē)

(
y(f̄ , ē) log

(
1 + e−

∑
i wifi(f̄ ,ē)

)
+
(
1− y(f̄ , ē)

)
log
(

1 + e
∑

i wifi(f̄ ,ē)
))

where y(f̄ , ē) is 0 for negative examples and 1 for positive ones.
Since this corresponds to the maximum likelihood estimation for the given observations,

it can be shown that, for a feature set composed solely of unique phrase pair identifiers,
the model will learn the translation probabilities φ(ē|f̄) estimated by relative frequency
that are used in standard phrase-based SMT (see Section 2.3). In other words, if we define
a feature function fi for every phrase pair (f̄ , ē) so that fi(f̄ , ē) = 1, ∀j 6= i, fj(f̄ , ē) = 0,
and ∀(f̄ ′, ē′) 6= (f̄ , ē), fi(f̄

′, ē′) = 0, then the following will hold3 (see Section 5.2 for a step
by step proof):

h(f̄ , ē) = φ(ē|f̄) =
count(f̄ , ē)

count(f̄)

Therefore, the proposed model can be seen as a generalization of the standard trans-
lation probabilities used in SMT that allows to naturally incorporate additional features
to obtain better probability estimates. We hypothesize that this could be useful in several
ways:

1. It allows to use additional lexical features shared across different phrase pairs that
could have a smoothing effect and help to better estimate the probability of phrase
pairs with very few occurrences in the training corpus. For instance, let’s say that
the phrase pair “Real Sociedad won the match - la Real ganó el partido” has very
few occurrences in the training corpus, making it hard to estimate its probability,
whereas “Real Sociedad lost the match - la Real perdió el partido” and “Athletic
won the match - el Athletic ganó el partido” occur more often. If we had a feature

3Note that, in Section 2.3, we defined φ(f̄ , ē) = count(f̄ ,ē)∑
f̄ count(f̄ ,ē)

instead. This is because the standard

translation probabilities do not consider unaligned phrases, whereas we explore both the variant that does
and does not. Therefore, in our notation here count(f̄) denotes the total number of considered occurrences,
including unaligned ones or not depending on the variant used.
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for every combination of bigrams between the source and the target languages, we
could potentially get better probability estimates thanks to the additional evidence
we have for bigram pairs like “Real Sociedad - la Real”, “won the - ganó el” or “the
match - el partido”. What is more, this would even make it possible to estimate
the probability of new phrase pairs with no occurrences in the training corpus. We
design such lexical features later in Section 5.3 and test them in the experiments in
Section 5.4.

2. It allows to incorporate features for the context of the phrase in the source language,
overcoming one of the most obvious limitations of traditional translation models.
Sometimes it is the context that determines the appropriateness of a phrase pair
as it is the case of “your arm - tu arma” and “your arm - tu brazo”. Traditional
translation models would nonetheless assign a fixed score to each pair and nothing
but the language model could choose the correct translation taking the context into
account. The proposed model can overcome this issue by replacing the static weights
of traditional translation models with dynamic ones that depend on context features.
We also design such lexical context features in Section 5.3 and test them in the
experiments in Section 5.4. It should be noted that, while it is theoretically possible
to have context features for both the source and the target languages, we do not
explore the latter option in this work due to the extra complexity that it would pose
for decoding, as the context would not be known a priori (see Section 5.3.2).

3. It provides a framework to naturally incorporate linguistic information into the trans-
lation model. Factored models are typically used for this purpose, combining inde-
pendent translation and generation models for different factors such as the surface
form, the lemma and the part-of-speech (see Section 2.4.1). By adding the relevant
features, the proposed model allows to use the very same information with the added
advantage that the different factors can be more flexibly combined and be tuned
according to a joint optimization objective. Based on this idea, we explore the in-
corporation of distributional semantic features into the model through word clusters
and word embeddings later in Chapter 6.

5.2 Proof of relative frequency counting equivalence

Following the formulation in Section 5.1, we define a feature set composed of unique
phrase pair identifier feature functions fi so that, for every fi associated to a phrase
pair (f̄ , ē), fi(f̄ , ē) = 1, ∀j 6= i, fj(f̄ , ē) = 0, and ∀(f̄ ′, ē′) 6= (f̄ , ē), fi(f̄

′, ē′) = 0. Since
∀(f̄ ′, ē′) 6= (f̄ , ē), fi(f̄

′, ē′) = 0, the weight wi associated with the feature function fi will
be annulled for every (f̄ ′, ē′) 6= (f̄ , ē). At the same time, given that ∀j 6= i, fj(f̄ , ē) = 0,
both the error function and the prediction of the phrase pair (f̄ , ē) will only depend on
the weight wi. As a consequence, each weight wi can be optimized independently, and
it is enough to consider the phrase pair (f̄ , ē) characterized by its corresponding feature
function fi for that.
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Since, considering the training method described above, we will have count(f̄ , ē) positive
examples for the phrase pair (f̄ , ē) (one for each occurrence of f̄ in the training corpus that
is aligned with ē) and count(f̄) − count(f̄ , ē) negative examples (one for each occurrence
of f̄ in the training corpus that is not aligned with ē), the optimal weight ŵi will be given
by

ŵi = arg min
wi

(
count(f̄ , ē) log

(
1 + e−wi

)
+
(
count(f̄)− count(f̄ , ē)

)
log (1 + ewi)

)
= arg min

wi

(
count(f̄ , ē) log

(
1 + ewi

ewi

)
+
(
count(f̄)− count(f̄ , ē)

)
log (1 + ewi)

)
= arg min

wi

(
count(f̄ , ē) (log (1 + ewi)− wi) +

(
count(f̄)− count(f̄ , ē)

)
log (1 + ewi)

)
= arg min

wi

(
count(f̄) log (1 + ewi)− count(f̄ , ē)wi

)
In order to find the weight wi that minimizes the above expression analytically, we will

first calculate its derivative:

d

dwi

(
count(f̄) log (1 + ewi)− count(f̄ , ē)wi

)
= count(f̄)

ewi

1 + ewi
− count(f̄ , ē)

Since the error function is continuous and differentiable, it is known that its global
minimum will either happen when the derivative is 0 or as wi approaches −∞ or∞. Let’s
first calculate the values of wi for which the former holds:

count(f̄)
ewi

1 + ewi
− count(f̄ , ē) = 0

count(f̄)ewi = count(f̄ , ē) (1 + ewi)

ewi =
count(f̄ , ē)

count(f̄)− count(f̄ , ē)

wi = log
count(f̄ , ē)

count(f̄)− count(f̄ , ē)

In order to know what happens as wi approaches -∞, we will calculate the corresponding
limit:

lim
wi→−∞

(
count(f̄ , ē) log

(
1 + e−wi

)
+
(
count(f̄)− count(f̄ , ē)

)
log (1 + ewi)

)
= lim

wi→−∞
count(f̄ , ē) log

(
1 + e−wi

)
=


∞ count(f̄ , ē) > 0

0 count(f̄ , ē) = 0

−∞ count(f̄ , ē) < 0
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Similarly, we will calculate the limit of the error function as wi approaches ∞:

lim
wi→∞

(
count(f̄ , ē) log

(
1 + e−wi

)
+
(
count(f̄)− count(f̄ , ē)

)
log (1 + ewi)

)
= lim

wi→∞

(
count(f̄)− count(f̄ , ē)

)
log (1 + ewi) =


∞ count(f̄) > count(f̄ , ē)

0 count(f̄) = count(f̄ , ē)

−∞ count(f̄) < count(f̄ , ē)

This way, when count(f̄) > count(f̄ , ē) > 0 the error function will go to ∞ as wi
approaches−∞ and∞, so wi = log count(f̄ ,ē)

count(f̄)−count(f̄ ,ē)
will necessarily be the global minimum.

The cases where count(f̄ , ē) < 0 or count(f̄) < count(f̄ , ē) can be ignored, as it is not
possible to have a negative count by definition. For the missing cases, it can be seen that,

when count(f̄ , ē) = 0, the expression log count(f̄ ,ē)

count(f̄)−count(f̄ ,ē)
gives −∞, so it also corresponds

to the global minimum of the error function. Finally, when count(f̄) = count(f̄ , ē), the

expression log count(f̄ ,ē)

count(f̄)−count(f̄ ,ē)
gives ∞ and thus corresponds to the global minimum of

the error function as well. Therefore, we have shown that, for every possible case, wi =

log count(f̄ ,ē)

count(f̄)−count(f̄ ,ē)
is the value that minimizes the loss function.

Now that we know the optimal value of the weight wi, we can replace it in the sigmoid
function to obtain the probability predicted by the model:

h(f̄ , ē) =
1

1 + e−wi
=

1

1 + e
− log

count(f̄ ,ē)

count(f̄)−count(f̄ ,ē)

=
1

1 + count(f̄)−count(f̄ ,ē)

count(f̄ ,ē)

=
count(f̄ , ē)

count(f̄)

The last expression corresponds to the relative frequency estimate of the translation
probability φ(ē|f̄) used in standard phrase-based systems, so it is therefore proved that,
for this set of features, h(f̄ , ē) = φ(ē|f̄).

5.3 Feature design

In this section, we describe the lexical features we design for the proposed model. We
define different source and target language features independently in Section 5.3.1 and
5.3.2, respectively, and analyze the need and approach to combine them in Section 5.3.3.

5.3.1 Source language features

Our lexical feature set for the source language consists of the following independent fea-
tures:

• Indicator: A unique identifier for the source phrase f̄ so that its corresponding
feature function fi is 1 for that phrase and 0 for the rest.

• Phrase internal: A position independent identifier for each word in the source
phrase that is shared among all the source phrases containing the word in question.
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Mary [did not slap] the green witch
Indicator sind^did_not_slap:1

Phrase internal sin^did:1, sin^not:1, sin^slap:1

Window (size=2) c^-1^Mary:1, c^1^the:1, c^2^green:1

Window (size=2, bow=1) c^bow^Mary:1, c^bow^the:1, c^bow^green:1

Bag of words bow^Mary:1, bow^did:1, bow^not:1, bow^slap:1, bow^the:1, bow^green:1, bow^witch:1

Table 1: Example source language lexical features

In other words, the phrase internal feature function fi associated with a given word
will be 1 for every source phrase that contains that word and 0 for the rest.

• Window: A position dependent identifier for each word in the context window of
the source phrase, so that the window feature function fi associated with a given
word and offset (e.g. the word “from” occurring two positions before the phrase) is
1 for all the instances (regardless of the specific source phrase) that have it in the
corresponding position of their contexts and 0 for the rest. The size of the window
is parametrized. In addition to that, we also implement a variant without the offset
information, using a bag of words representation of the context window instead.

• Bag of words: A position independent identifier for each word in the segment
(typically sentence) in which the phrase occurs, including the phrase itself. In other
words, the bag of words feature function associated with a given word will be 1 for
all the segments that contain that word and 0 for the rest.

As it can be seen, the first two characterize the phrase itself, whereas the last two
are given by the context in which it occurs. Table 1 shows the features that would be
accordingly generated for an example source phrase and context.

5.3.2 Target language features

In principle, the target language lexical features could be defined analogously to the source
language ones described in Section 5.3.1. Even if this would be indeed possible for training,
the use of context features would nonetheless pose a problem for testing, where the con-
text of a phrase translation candidate is not known a priori. More concretely, this would
make the score and, by extension, the choice of a target phrase depend on the choice of
its surrounding target phrases, which would at the same time depend on the choice of the
former and other target phrases. However, as discussed in Section 2.3, SMT decoding is
an NP-complete problem (Knight, 1999), so considering all the target phrase candidate
combinations is intractable in practice. It would therefore be necessary to integrate dy-
namic phrase translation scores in the heuristic search that is used instead, which would
not only be very challenging to implement, but could even have a negative effect due to the
extra complexity that it would pose. For that reason, we only define context independent
features for the target phrase as follows:
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Maria [no daba una bofetada] a la bruja verde
Indicator tind^no_daba_una_bofetada:1

Phrase internal tin^no:1, tin^daba:1, tin^una:1, tin^bofetada:1

Table 2: Example target language lexical features

• Indicator: A unique identifier for the target phrase ē so that its corresponding
feature function fi is 1 for that phrase and 0 for the rest.

• Phrase internal: A position independent identifier for each word in the target
phrase that is shared among all the target phrases containing the word in question.
In other words, the phrase internal feature function fi associated with a given word
will be 1 for every target phrase that contains that word and 0 for the rest.

Table 2 shows the features that would be accordingly generated for an example target
phrase, aligned with the one shown in Table 1 for the source side.

5.3.3 Feature combination

Even if the source and target language features defined throughout the section serve to
characterize a phrase pair (f̄ , ē), a logistic regression classifier trained over them would not
be able to perform well due to the linear separability problem discussed in Section 3.4. The
reason is that, by definition, the output of a linear model like logistic regression is a function
of a linear combination of the features it takes, which implies that the contribution of each
feature to the final prediction is independent to the rest. As a consequence, the classifier
would need to assess the adequateness of the source phrase and its corresponding target
phrase independently, without considering the relation between them, so it would not be
able to model their translation probability at all, as we aim. For instance, in the example
above “did not slap” and “no daba una bofetada” or “the green witch” and “la bruja verde”
would be scored independently, so logistic regression would not be able to assign a high
probability to the correct phrase pairs (“did not slap”, “no daba una bofetada”) and (“the
green witch”, “la bruja verde”) while assigning a low probability to the incorrect phrase
pairs (“did not slap”, “la bruja verde”) and (“the green witch”, “no daba una bofetada”).

In order to overcome this issue, we combine the source and target language features
to create new interaction features that capture the relation between both sides, following
the feature engineering approach discussed in Section 3.4.1. More concretely, we take the
Cartesian product between the source and the target feature sets, creating a new interaction
feature for every possible combination between a source language feature fi(f̄) and a target
language feature fj(ē) as fi,j(f̄ , ē) = fi(f̄)× fj(ē).

5.4 Experiment and results

In order to implement the proposed logistic regression model, we use the Vowpal Wabbit
large scale machine learning system presented in Section 3.6, and integrate it in the Moses
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Use Domain Sentences English tokens Spanish tokens
Europarl training parliamentary proceedings 1,929,366 51,593,389 54,021,555
WMT12 development news 3,000 72,895 78,831
WMT13 test news 3,000 64,761 70,485

Table 3: Bilingual English-Spanish corpora

Domain Sentences Tokens
Europarl parliamentary proceedings 1,965,800 57,053,435

United Nations administrative documents 11,197,000 361,653,831
News Commentary news 174,500 5,118,381

News 2007-2012 news 13,384,600 385,990,821
Common Crawl crawling 1,845,300 49,308,828

KDE4 software localizations 218,700 2,350,928
OpenOffice software localizations 38,100 481,341

Table 4: Monolingual Spanish corpora used for language modeling

toolkit presented in Section 2.6 as a dynamic feature function. As discussed before, this
implementation is based on that of ÚFAL researchers, which is now part of the official Moses
release, with the necessary changes for the variants and new features that we propose.

We test our method in English-Spanish translation using a standard experimental setup.
We first train a baseline phrase-based SMT system using Moses, and then measure the
contribution of the logistic regression model over it under different settings. Our base-
line system uses standard parameters: ixa-pipe-tok for tokenization (Agerri et al., 2014),
MGIZA for word alignment with the grow-diag-final-and symmetrization heuristic, a max-
imum length of 80 tokens per sentence and 5 tokens per phrase, translation probabilities
in both directions with Good Turing discounting, lexical weightings in both directions, a
phrase length penalty, a lexicalized reordering model and a target language model. Table
3 summarizes the details of the parallel corpora used for that purpose. As for the language
model, we trained a 5-gram model for each monolingual corpus in Table 4, and interpolate
them by optimizing perplexity on the WMT12 development set. The weights for the dif-
ferent components were adjusted to optimize BLEU using MERT tuning over the WMT12
development set, with an n-best list of size 100. However, given the stochastic nature of
MERT, this introduces some variability in the results. In order to reduce it, we perform
3 independent runs for each configuration. We use BLEU as our evaluation metric (see
Section 2.5), and report the average score over the 3 MERT runs. Table 5 shows the results
we obtain for the baseline system under these conditions.

In order to train the logistic regression model we propose with Vowpal Wabbit, we
extract all the possible positive and negative examples from the training set as described
in Section 5.1. We use its cost sensitive one-against-all classification mode with label
dependent features and namespace-dependent square features to efficiently implement the
feature set we propose, using the hashing trick for feature vectorization with a 28 bit table
to avoid collisions. We run the training for 30 epochs using stochastic gradient descent with
a decay learning rate and feature caching, running a local spanning tree server to parallelize
the process. In order to prevent overfitting, the model resulting after each epoch is tested
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BLEU (%)
Development Test

Baseline 31.68 28.28

Table 5: Results on English-Spanish translation for the baseline system

in a separate validation set, choosing the one with the highest accuracy on it. We try using
both the development corpus and a holdout set of 5,000 sentences that we keep aside from
training for that purpose. While using the development corpus has the advantage of being
in the same domain as the test set and consistent with the choice for MERT tuning, it also
has the disadvantage of containing many phrases that were not seen during training and
are therefore missing in the phrase table, which is the reason why we try to experiment
with both options.

Under these conditions, running each experiment takes 1-2 days in an entire 8 core
node of our cluster, a Xeon E5 2640 v2 with 128GB of RAM. Since the cluster has only
4 such general purpose nodes to be shared among the entire research group, this posed
a very important limitation on the number of experiments we could carry out. For that
reason, we were unable to perform a systematic exploration for the different parameters,
and had to follow an opportunistic approach instead.

We decided to use the indicator, phrase internal and position dependent window of size
3 as the source language features based on the experimental results reported by ÚFAL
researchers for Czech-English. We also ran some preliminary experiments with larger
window sizes, but did not appreciate any improvement. As for the target side, using
the indicator feature combined with the source language features is roughly equivalent to
having an independent classifier for each target phrase, whereas using the phrase internal
feature combined with the source language features is roughly equivalent to having an
independent classifier for each target word. For that reason, we tried using both features
on their own as well as their combination. The results obtained for these experiments are
given in Table 6. They were all done using the direct integration of the logistic classifier
probabilities, considering unaligned or missing translations for negative examples, and
using the development set to choose the best epoch. The results show a small improvement
over the baseline for all the 3 settings both in the development and the test set, with the
combination of the target indicator and phrase internal achieving the best performance.
This suggests that both target features add useful and complementary information for
phrase translation probability modeling, so we use them both for all the other experiments
that we perform.

In addition to that, we also analyzed, as discussed before, the effect of using a random
holdout from the training corpus, as opposed to the development corpus, for the validation
set to choose the best epoch. The results for this experiment are given in Table 7, showing
slightly better performance for the training holdout configuration.

Finally, we also tested the different integration methods discussed in Section 5.1 when
it comes to the use of the softmax function for probability normalization as opposed to the
direct used of the logistic regression prediction, and the use or not of unknown translations
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TARGET FEATURES INTEGRATION BLEU (%)

Indicator
Phrase
internal

Softmax
Unknown
examples

Validation Development Test

X X Development 31.84 (+0.16) 28.39 (+0.11)
X X Development 31.76 (+0.08) 28.38 (+0.10)
X X X Development 31.88 (+0.20) 28.44 (+0.16)

Table 6: Results on English-Spanish translation for different target language features

TARGET FEATURES INTEGRATION BLEU (%)

Indicator
Phrase
internal

Softmax
Unknown
examples

Validation Development Test

X X X Development 31.88 (+0.20) 28.44 (+0.16)
X X X Train holdout 31.94 (+0.26) 28.53 (+0.25)

Table 7: Results on English-Spanish translation for different validation sets

(i.e. unaligned source phrases or target phrases missing in the phrase table) to generate
negative examples. Table 8 shows the results for this experiment. As it can be seen,
both variations we propose (i.e. the direct integration of the logistic regression probability
and the use of unknown examples) perform better than the original model from ÚFAL
researchers, with the improvement being particularly notable in the development set.

All in all, our best configuration achieves an improvement of 0.26 and 0.25 BLEU points
over the baseline in the development and the test set, respectively. While it cannot be said
that this improvement is big in quantitative terms, it is quite consistent across the different
settings tested, getting an improvement of over 0.16 BLEU points in the test set for all the
configurations that use both target features. As a reference, it is said that it is necessary
to have an improvement of at least 0.5 BLEU points for a machine translation work to be
accepted in a major conference like ACL. While we still need to make some progress to get
there, it is remarkable that, in contrast with many works in the field, our improvement does
not come from incorporating external linguistic information into the translation process,
but relies solely on the bilingual corpora used to train the SMT system itself, so the method
can be directly applied to any other language pair regardless of the available resources.

In order to better understand where this improvement actually comes from, Figure
15 shows the weights that MERT assigns to the different components for the baseline
system and our best performing configuration. As it can be seen, our logistic regression
model almost completely replaces the forward translation probability, and it also reduces

TARGET FEATURES INTEGRATION BLEU (%)

Indicator
Phrase
internal

Softmax
Unknown
examples

Validation Development Test

X X Train holdout 31.84 (+0.16) 28.46 (+0.18)
X X X Train holdout 31.94 (+0.26) 28.53 (+0.25)
X X X Train holdout 31.75 (+0.07) 28.48 (+0.20)

Table 8: Results on English-Spanish translation for different integration methods
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Figure 15: Average weights assigned by MERT for the different components

the weight of the inverse translation probability and the language model. This suggests
that the probability estimates given by our model are better than the standard translation
probabilities used in phrase-based SMT. As discussed in Section 5.1 and proved in Section
5.2, the proposed model can be seen as a generalization of these frequency counting based
translation probabilities that allows to incorporate additional features to increase its ex-
pressive power, so these results are consistent with our theoretical expectations. At the
same time, we only use source language context features and generate negative examples
for the different phrase table entries for each source phrase in the training corpus, so it
makes sense that the logistic regression model replaces the forward translation probabil-
ity more than the inverse one, as this is what it formally models. We also attempted
to adapt the training procedure to model the inverse translation probability instead, but
our preliminary experiments did not show any positive result. Finally, the fact that our
model considers the source language context to score each phrase pair explains why it also
complements the language model for lexical selection.

5.5 Conclusions

In this chapter, we have proposed the use of logistic regression for dynamic phrase trans-
lation probability modeling. We have proved that our model is a generalization of the
relative frequency counting used in phrase-based SMT, allowing to naturally incorporate
additional features to obtain better probability estimates. We define source and target
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language lexical features independently and take their quadratic combination, including
features shared across different phrase pairs to mitigate the sparsity problem as well as
source language context features to mitigate the locality problem in SMT.

Our experiments on English-Spanish machine translation show the effectiveness of the
proposed model, with an improvement of up to 0.25 BLEU points over a strong baseline
when using this basic set of lexical features. While it cannot be said that this improvement
is big in quantitative terms, it is remarkably consistent across the different settings tested
and relies solely on the bilingual corpus used to train the baseline SMT system itself.
Our analysis of the weights assigned by MERT reveals that this improvement comes from
almost completely replacing the forward translation probabilities while partly taking the
place of the inverse translation probabilities and the language model, suggesting that the
probability estimates given by our model are indeed better than those used in standard
phrase-based SMT and pointing to the usefulness of context features for lexical selection.

We conclude that the proposed method provides a promising framework to incorporate
additional information into the translation model, as we do next in Chapter 6 with distri-
butional semantics, serving as a much more flexible alternative to factored models that is
even capable of dealing with dynamic context-dependent features.
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6 Distributional semantic features for phrase transla-

tion logistic regression

In this chapter, we incorporate distributional semantic features into the logistic regression
model presented in Chapter 5. As discussed there, the proposed model provides a flexible
framework to naturally incorporate linguistic information into the translation model, and
this is what we explore in this chapter for distributional semantics through word clusters
and word embeddings. This way, we present the word cluster and word embedding features
we propose for that purpose in Section 6.1 and 6.2, respectively, discuss the experiments
performed with them on English-Spanish translation and the obtained results in Section
6.3, and outline our conclusions in Section 6.4.

6.1 Word cluster features

As discussed in Section 4.2, word clustering groups words together in such a way that
those that belong to the same cluster are similar to each other in some syntactic and/or
semantic sense. These clusters are usually learned in an unsupervised manner from large
monolingual corpora, based on the distributional hypothesis.

Given that word clusters essentially map each word into one of the predefined number
of classes, we define word cluster features by replacing the surface forms in all the features
proposed in Section 5.3 by their corresponding class identifier. Table 9 shows an example of
this for the source language features. Since we learn word clusters in a separate monolingual
corpus, we use a special class for out-of-vocabulary (OOV) words, as it is the case of “Mary”
in this artificial example.

It should be noted that these word cluster features are not able to increase the expressive
power of the model in the training set itself. The reason is that the mapping defined by
word clustering is static, so these new features and their corresponding weights act as
shared weights for the previously presented lexical features. As a consequence, when it
comes to the training corpus, for any model using a feature set of both lexical and word
cluster features, there exists a completely equivalent one that does not use the word cluster
features at all.

However, this does not mean that the word cluster features cannot be helpful. In fact,
shared weights are characteristic of convolutional neural networks, where they are used
to aid the generalization capacity of the model by enforcing the property of translation
invariance. We think that, in our case, shared weights could also be helpful for guiding the
training and learn models that generalize better. In particular, we hypothesize that word
cluster features could be useful in the following aspects:

• They allow to incorporate unsupervised knowledge from large monolingual
corpora. Traditional phrase-based SMT systems use a target monolingual corpus
for language modeling, but are unable to benefit from source monolingual corpora.
Thanks to word cluster features, we are able to incorporate knowledge acquired in an
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Mary|cloov [did|cl53 not|cl17 slap|cl87] the|cl23 green|cl49 witch|cl83
Indicator sind^cl53_cl17_cl87:1

Phrase internal sin^cl53:1, sin^cl17:1, sin^cl87:1

Window (size=2) c^-1^cloov:1, c^1^cl23:1, c^2^cl49:1

Window (size=2, bow=1) c^bow^cloov:1, c^bow^cl23:1, c^bow^cl49:1

Bag of words bow^cloov:1, bow^cl53:1, bow^cl17:1, bow^cl87:1, bow^cl23:1, bow^cl49:1, bow^cl83:1

Table 9: Example source language word cluster features

unsupervised manner from monolingual corpora in either language into the model.
This knowledge can be useful to guide the training process, in particular when it
comes to words with very few occurrences in the bilingual corpus, for which the
additional evidence from monolingual corpora can be very helpful. Related to that,
the notion of shared weights underlying word cluster features can push the training
to find more general regularities, reducing the risk of overfitting.

• They allow to account for out-of-vocabulary (OOV) words. For the lexical
features proposed in Section 5.3, words that do not appear in the training corpus
do not have any associated weight, so they are simply ignored by the model. Never-
theless, thanks to word cluster features every word that is found in the monolingual
corpus can have an associated cluster with its corresponding weight, even if it does
not appear in the bilingual corpus. Moreover, even for words that do not occur in
the monolingual corpus, the special OOV class mentioned before can be used.

• They allow to drastically reduce the number of features for some informa-
tion, aiding generalization. The sparsity of natural language results in a massive
number of different lexical features. As a consequence, adding some relevant infor-
mation into the model might actually have a negative impact due to overfitting, as is
likely to occur with the position dependent window feature above certain limit for the
window size. In contrast, word cluster features provide a natural way to incorporate
the same information while reducing the number of different features to the desired
amount, learning models that generalize better.

6.2 Word embedding features

As discussed in Section 4.1, word embeddings are dense, low-dimensional representations of
words in a continuous vector space distributed in some meaningful way from the semantic
point of view. Therefore, just as word clusters provide a static mapping from words to
discrete classes, word embeddings provide a static mapping from words to continuous
vectors. Even if we have so far only dealt with binary features, continuous features like
specific dimension of these word embeddings can also be incorporated into the proposed
model by simply multiplying their value by their corresponding weight. The motivation
for this is similar to that of word cluster features, as word embeddings also provide a way
to incorporate knowledge acquired from large monolingual corpora. Moreover, they have
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Mary [did not slap] the green witch
Phrase concatenation vec^in^1^0:0.084, vec^in^2^0:-0.045, vec^in^3^0:0.227, ...

Phrase centroid vec^in^c^0:0.089, ...

Window concatenation (size=2) vec^b^1^0:-0.079, vec^a^1^0:0.147, vec^a^2^0:0.037, ...

Window centroid (size=2) vec^b^c^0:-0.079, vec^a^c^0:0.092, ...

Table 10: Example source language word embedding features. For brevity, only the first
dimension is shown.

the added advantage that, unlike word clusters, they provide a unique representation for
each word, while overcoming the sparsity problem by using a dense, low-dimensional vector
space. We define the following features that are based on them:

• Phrase concatenation: The concatenation of the embeddings of all the words in
the phrase in the order in which they occur. A global numeric feature is used for each
dimension of the resulting embedding. Equivalently, this can be seen as a position
dependent embedding representation of each word in the phrase.

• Phrase centroid: The average or centroid embedding of all the words in the phrase.
A global numeric feature is used for each dimension of the resulting embedding.

• Window concatenation: The concatenation of the embeddings in each side of
the context window of the phrase from the closest to the farthest. The size of the
window is parametrized, and a global numeric feature is used for each dimension of
the resulting embedding in each side. Equivalently, this can be seen as a position
dependent embedding representation of each word in the context window of the
phrase.

• Window centroid: The average or centroid embedding for all the words in each
side of the context window of the phrase. The size of the window is parametrized,
and a global numeric feature is used for each dimension of the resulting embedding
in each side.

As it can be seen, the first two characterize the phrase itself and we therefore define
them for both the source and the target side independently, whereas the last two are given
by the context in which the phrase occurs, so we only use them for the source language
following the discussion in Section 5.3.2. Table 10 shows the source side embedding features
that would be accordingly generated for an example phrase and context.

6.3 Experiment and results

In order to test the distributional semantic features presented throughout the section, we
use the same experimental settings presented in Section 5.4. Since the new features do
not aim to replace the basic lexical features used there, but rather complement them, we
combine them both under different configurations and measure the impact in the BLEU
score. Due to the high computational cost already discussed there (each experiment needs
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CLUSTERS INTEGRATION BLEU (%)

Corpus Method Size Softmax
Unknown
examples

Development Test

gigaword word2vec 200 X 31.76 (+0.08) 28.43 (+0.15)
reuters clark 600 X 31.83 (+0.15) 28.39 (+0.11)
reuters brown 1000 X 31.82 (+0.14) 28.46 (+0.18)

Table 11: Results on English-Spanish translation for different word clusters

a minimum of 1-2 days taking an entire 8 core node of our cluster), we were not able to
perform a systematic exploration of the different feature and parameters either and had
to follow an opportunistic approach instead. Moreover, we also experimented with the
different variants proposed, partly for the purpose of contrasting the results obtained at
that section when different features are used, and partly as a consequence of the order in
which the experiments were actually carried out.

As far as the word cluster features are concerned, we reused different word clusterings
from a yet to be published work in named entity recognition in collaboration with Rodrigo
Agerri, to whom we would like to thank all his help. Based on the results in that task, we
chose one configuration in the source language (English) for each of the three clustering
techniques presented in Section 4.2. In the case of Brown clustering, we used 1000 word
classes learned from the Reuters RCV1 corpus, consisting of around 63 million words that
were reduced to 35 after preprocessing. The same corpus was used for Clark clustering, but
in that case the selected number of clusters was 600. Finally, the word embedding clustering
was done with word2vec on the 5th edition of the Gigaword corpus, which consists of 4000
million words, and the number of classes was 200.

In order to test the effect of these clustering settings in our task, we used them for
the source language indicator, phrase internal and the position dependent window feature
of size 5, along with the basic lexical features used in the experiments in Section 5.4
(the source and target indicator and phrase internal, and the position dependent source
window of size 3), combining them as described in Section 5.3.3. In all the cases, we used
the original softmax integration method without unknown examples, taking the training
holdout for the validation set to choose the best epoch.

The obtained results are given in Table 11. As it can be seen, the observed differences
are small and not conclusive given the the contrast between the development set and the
test set and the variability introduced by MERT. For that reason, we decide to use the
configuration that performs best in the development set (Clark clustering in the Reuters
RCV1 corpus with 600 word classes) for the rest of our experiments.

Using this clustering configuration, we next analyzed the effect of using different feature
sets. Table 12 summarizes the different settings tested and their corresponding BLEU in
the development and test sets. In all the cases, we used the lexical indicator and phrase
internal features for the target language with the softmax integration method without
unknown examples, taking the training holdout for the validation set. The results suggest
that the word clustering features cannot replace the lexical features completely, since the
second configuration, which does not use any lexical feature for the source language, obtains
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SOURCE FEATURES (WORD / CLUSTER) INTEGRATION BLEU (%)

Indicator
Phrase
internal

Window
Bag of
words

Softmax
Unknown
examples

Development Test

both both 3/5 - X 31.83 (+0.15) 28.39 (+0.11)
cluster cluster 0/5 - X 31.75 (+0.07) 28.30 (+0.02)
both both 3/5 cluster X 31.71 (+0.03) 28.45 (+0.17)
both both 3/3 - X 31.81 (+0.13) 28.38 (+0.10)
word word 3/5 - X 31.85 (+0.17) 28.44 (+0.16)

Table 12: Results on English-Spanish translation for different word cluster features

SOURCE FEATURES (WORD / CLUSTER) INTEGRATION BLEU (%)

Indicator
Phrase
internal

Window
Bag of
words

Softmax
Unknown
examples

Development Test

both both 3/5 - 31.86 (+0.18) 28.46 (+0.18)
both both 3/5 - X 31.98 (+0.30) 28.45 (+0.17)
both both 3/5 - X 31.83 (+0.15) 28.39 (+0.11)
word word 3/5 - 31.77 (+0.09) 28.47 (+0.19)
word word 3/5 - X 31.92 (+0.24) 28.55 (+0.27)
word word 3/5 - X 31.85 (+0.17) 28.44 (+0.16)

Table 13: Results on English-Spanish translation for different word cluster integration
methods

considerably worse results, in particular in the test set. For the remaining configurations
the results are much less conclusive, but we observe that, in this case, using a window of 5
for the cluster features performs slightly better than using a window of 3, and using surface
forms alone for the indicator and phrase internal features also gives better results than using
both word clusters and surface forms. Finally, it is remarkable that the configuration using
the bag of words feature for word clusters obtains the best results in the test set in spite
of being the worst one in the development set.

In addition to that, we also tested the different integration methods as done in Section
5.4 for the two best performing feature sets above in the development set. The obtained
results are shown in Table 13. Once again, we observe that the variants we propose perform
better than the original model. This way, the direct integration of logistic regression
probabilities with unknown examples obtains the best results so far both in the development
set and the test set, in the first case using both surface forms and word clusters for the
source language indicator and phrase internal features and in the second case using the
word clusters alone for the same features.

As for the word embedding features, we faced huge difficulties to carry out our exper-
iments because of the big memory requirements and slow training times caused by the
feature explosion when combining source language and target language features. Running
a single experiment in a complete 8 core node of our cluster would have taken several
weeks with standard 300-dimension embeddings even when using the centroid phrase or
window features alone, an unfeasible cost for us considering that our cluster has only 4
such nodes to be shared among the entire research group. For that reason, we ran a single
experiment with the source language window centroid feature of size 5 using 50-dimension
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INTEGRATION BLEU (%)

Softmax
Unknown
examples

Development Test

Window centroid (size=5) X 32.02 (+0.34) 28.44 (+0.16)

Table 14: Results on English-Spanish translation with embedding features

word embeddings, which took 5-6 days. More concretely, we trained our embeddings using
the skip-gram model with word2vec, and we set the context window to 5, the subsampling
to 1e-4, the number of negative samples to 30 and the number of iterations to 10 (see
Section 4.1). In addition to Europarl, we used the English portion of the News 2007-2012
monolingual corpus from WMT as our training corpus, which has 68,521,621 sentences
and 1,612,954,315 tokens. Our vocabulary consisted of all the words with at least one
occurrence in Europarl together with all the words in the monolingual corpus with at least
5 occurrences in total. In addition to the source language window centroid of size 5 for the
word embeddings, we also used our basic lexical features (the source and target indicator
and phrase internal, and the position dependent source window of size 3), combining them
as described in Section 5.3.3.

The obtained results are shown in Table 14. As it can be seen, this configuration
achieves the best results so far in the development set, with an absolute improvement of
0.08 BLEU points with respect to the equivalent configuration without the word embedding
features in Section 5.4. However, in spite of the good results in the development set, we
do not get any improvement in the test set.

6.4 Conclusions

In this chapter, we have explored the integration of distributional semantic features into
the logistic regression model presented in Chapter 5, which serves to incorporate unsuper-
vised knowledge from large monolingual corpora, mitigate the problem of out-of-vocabulary
words, and reduce the number of parameters of the model, aiding generalization. For that
purpose, we have proposed the use word cluster features by replacing the surface forms in
lexical features by their corresponding class, as well as word embedding features for both
the phrase and its context through concatenation and averaging.

Using these features, we are able to improve the best results in Chapter 5 with the
basic lexical features, but this improvement is very modest and insufficient to draw any
clear conclusion. However, we consider that our work was greatly conditioned by the high
computational cost of running the experiments along with the strong hardware limitations
that we had, and we plan to keep running more experiments for different feature sets
and hyperparameters so as to obtain more conclusive results, in particular for the word
embedding features.
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7 A general framework for bilingual word embedding

mappings

In this chapter, we propose a general framework to learn bilingual word embedding map-
pings. Our model starts with a basic optimization objective and allows for several variants
that we prove to be equivalent to other meaningful optimization goals. Moreover, we show
that several existing methods fit naturally in this framework, providing a more global view
of the different bilingual mapping techniques and, in some cases, revealing flaws in their
theoretical justification.

We describe the proposed method and all its variants in Section 7.1. Section 7.2 then
analyzes its relation to other bilingual mapping methods proposed in the literature. Af-
ter that, Section 7.3 experimentally tests the proposed framework in comparison to other
methods in an English-Italian word translation induction task, and Section 7.4 concludes
the chapter. Later in Chapter 8, we apply the proposed method to phrase translation
similarity scoring and test it on phrase translation selection and end-to-end machine trans-
lation.

7.1 Proposed method

In this section, we describe the general framework we propose to learn bilingual word em-
bedding mappings. Section 7.1.1 first presents the basic optimization objective we propose
along with an exact method to solve it, and later sections propose several variants that,
without altering it in any fundamental way, are shown to be equivalent to other meaning-
ful and conceptually relevant optimization goals. This way, Section 7.1.2 introduces the
orthogonality constraint, which serves to guaranty monolingual invariance. Section 7.1.3
then discusses length normalization while Section 7.1.4 discusses mean centering, which
serve to maximize the average cosine similarity and covariance, respectively. Finally, Sec-
tion 7.1.5 describes how the propose framework also serves to work with weighted and
partial dictionaries.

7.1.1 Basic optimization objective

Let X and Z denote the word embedding matrices in two languages for a given bilingual
dictionary so that their ith row Xi∗ and Zi∗ are the word embeddings of the ith entry
in the dictionary. Our goal is to find a linear transformation matrix W so that XW
best approximates Z. For that purpose, the optimization objective we propose minimizes
the sum (or, equivalently, the average) of squared Euclidean distances for the dictionary
entries:

arg min
W

∑
i

‖Xi∗W − Zi∗‖2

Alternatively, this is equivalent to minimizing the (squared) Frobenius norm of the
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entire residual matrix:
arg min

W
‖XW − Z‖2

F

Consequently, W will be the so called least-squares solution of the linear matrix equa-
tion XW = Z. This is a known problem in linear algebra and can be solved by taking the

Moore-Penrose pseudoinverse X+ =
(
XTX

)−1
XT of matrix X as follows:

W = X+Z =
(
XTX

)−1
XTZ

A computationally efficient way to calculate the pseudoinverse X+ is to take the Sin-
gular Value Decomposition (SVD) of X as X = UΣV T , where U and V are orthogonal
matrices and Σ is a diagonal matrix whose entries, listed in descending order by convention,
are known as singular values. For such factorization, it can be shown that X+ = V Σ+UT

holds, where the pseudoinverse Σ+ is simply the transpose of the matrix formed by replac-
ing the non-zero elements in Σ with their reciprocal.

7.1.2 Orthogonality constraint for monolingual invariance

An extension of the above introduced optimization objective is to constrain W to be an
orthogonal matrix (i.e. a square matrix with orthonormal columns and rows, so W TW =
WW T = I holds) which yields to the following constrained optimization problem:

arg min
W

∑
i

‖Xi∗W − Zi∗‖2 s.t. W TW = I

So as to better understand the motivation behind this constraint, it should be noted
that an orthogonal transformation preserves the dot product of any two vectors Xi∗ and
Xj∗, which can be trivially derived from the definition of orthogonality itself:

(Xi∗W ) · (Xj∗W ) = (Xi∗W ) (Xj∗W )T = Xi∗WW TXT
j∗ = Xi∗IX

T
j∗ = Xi∗X

T
j∗ = Xi∗ ·Xj∗

Based on this, it can be easily seen that an orthogonal transformation also preserves
the Euclidean norm, Euclidean distance and cosine similarity in the original vector space:

‖Xi∗W‖ =
√

(Xi∗W ) · (Xi∗W ) =
√
Xi∗ ·Xi∗ = ‖Xi∗‖

‖Xi∗W −Xj∗W‖ = ‖(Xi∗ −Xj∗)W‖ = ‖Xi∗ −Xj∗‖

cos (Xi∗W,Xj∗W ) =
(Xi∗W ) · (Xj∗W )

‖Xi∗W‖‖Xj∗W‖
=

Xi∗ ·Xj∗

‖Xi∗‖‖Xj∗‖
= cos (Xi∗, Xj∗)

Therefore, all the fundamental properties and relations in the original vector space are
kept after an orthogonal transformation. Thanks to this, the orthogonality constraint guar-
antees that the monolingual word embeddings in the source language do not degrade after
the mapping, producing the optimal bilingual mapping that is monolingually invariant.
When doing so, it is also enforcing a relevant property that such transformation should
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intuitively have, which could be useful to avoid degenerated solutions and learn even better
bilingual mappings.

However, this also turns the original unconstrained optimization problem into a con-
strained one, so the Moore-Penrose pseudoinverse method introduced above cannot be used
anymore to solve it. Nevertheless, we next develop a simple yet efficient exact method that
accounts for the orthogonality constraint. First of all, we transform the original minimiza-
tion problem into a simpler and more convenient maximization one as follows:

arg min
W

∑
i

‖Xi∗W − Zi∗‖2 = arg min
W

∑
i

(Xi∗W − Zi∗) · (Xi∗W − Zi∗)

= arg min
W

∑
i

‖Xi∗W‖2 + ‖Zi∗‖2 − 2 (Xi∗W ) · Zi∗

= arg min
W

∑
i

‖Xi∗‖2 + ‖Zi∗‖2 − 2Xi∗WZT
i∗

= arg min
W

−
∑
i

Xi∗WZT
i∗

= arg max
W

∑
i

Xi∗WZT
i∗

= arg max
W

Tr
(
XWZT

)
= arg max

W
Tr
(
ZTXW

)
In the above expression, Tr(·) denotes the trace operator (the sum of all the elements

in the main diagonal), and the last equality is given by its cyclic property. At this point,
we can take the SVD of ZTX as ZTX = UΣV T , which yields to the following expression:

arg max
W

Tr
(
ZTXW

)
= arg max

W
Tr
(
UΣV TW

)
= arg max

W
Tr
(
ΣV TWU

)
Since V T , W and U are orthogonal matrices, their product V TWU will also be an

orthogonal matrix. In addition to that, given that Σ is a diagonal matrix, its trace after
an orthogonal transformation will be maximal when the values in its main diagonal are
preserved after the mapping, that is, when the orthogonal transformation matrix is the
identity matrix. This will happen when V TWU = I in our case, which yields to the
following solution for W :

V TWU = I

V V TWUUT = V IUT

W = V UT

To sum up, the solution of the proposed optimization problem with the orthogonality
constraint is given by W = V UT , where ZTX = UΣV T is the SVD factorization of ZTX.
It is interesting to see that this is somehow similar, at least in algorithmic terms, to
the solution of the unconstrained version, which recall that could be computed as W =
V Σ+UTZ, where X = UΣV T was the SVD factorization of X.
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7.1.3 Length normalization for maximum cosine similarity

Another possible variation for the proposed optimization problem is to normalize all the
word embeddings in both languages to be unit vectors, which can be done by simply
dividing them by their Euclidean norm. We next show that, when W is constrained to be
an orthogonal matrix, this effectively maximizes the sum of the cosine similarity between
the dictionary entries:

arg min
W

∑
i

∥∥∥∥ Xi∗

‖Xi∗‖
W − Zi∗

‖Zi∗‖

∥∥∥∥2

= arg min
W

∑
i

(
Xi∗W

‖Xi∗‖
− Zi∗
‖Zi∗‖

)
·
(
Xi∗W

‖Xi∗‖
− Zi∗
‖Zi∗‖

)
= arg min

W

∑
i

‖Xi∗W‖2

‖Xi∗‖2
+
‖Zi∗‖2

‖Zi∗‖2
− 2 (Xi∗W ) · Zi∗
‖Xi∗‖‖Zi∗‖

= arg min
W

∑
i

‖Xi∗‖2

‖Xi∗‖2
+
‖Zi∗‖2

‖Zi∗‖2
− 2 (Xi∗W ) · Zi∗
‖Xi∗W‖‖Zi∗‖

= arg min
W

∑
i

2− 2 cos (Xi∗W,Zi∗)

= arg max
W

∑
i

cos (Xi∗W,Zi∗)

Therefore, the proposed method serves not only to find the orthogonal transformation
minimizing the average squared Euclidean distance between the dictionary entries, but also
the one maximizing their average cosine similarity, for which it is enough to normalize all
the word embeddings in a preprocessing step. The motivation for this is twofold. First,
length normalization brings all the training instances to the same scale, ensuring that they
will contribute equally to the optimization goal unless some explicit weighting like the one
we introduce in Section 7.1.5 is used. Second, given that cosine similarity is typically used
to measure the similarity between different embeddings more than the Euclidean distance,
optimizing for it is likely to be more consistent with respect to the intended application of
the resulting embeddings.

7.1.4 Mean centering for maximum covariance

Analogously to length normalization, one can also mean center each word embedding in the
target language, that is, make their mean be zero, which can be done by simply subtracting
their actual mean. We next show that, when W is constrained to be an orthogonal matrix,
such mean centering maximizes the sum (or average) covariance between the dictionary
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entries:

arg min
W

∑
i

‖Xi∗W − Zi∗Cn‖2 = arg min
W

∑
i

‖Xi∗W‖2 + ‖Zi∗Cn‖2 − 2 (Xi∗W ) · (Zi∗Cn)

= arg max
W

∑
i

(Xi∗W ) · (Zi∗Cn)

= arg max
W

∑
i

Xi∗WCT
nZ

T
i∗

= arg max
W

∑
i

Xi∗WCnC
T
nZ

T
i∗

= arg max
W

∑
i

(Xi∗WCn) · (Zi∗Cn)

= arg max
W

∑
i

n cov (Xi∗W,Zi∗)

= arg max
W

∑
i

cov (Xi∗W,Zi∗)

where Cn denotes the centering matrix, which mean centers any vector that is multiplied
by, defined as Cn = In − 1

n
Jn, where n is the dimension of the word embeddings, In is

the n × n identity matrix and Jn is the n × n all-ones matrix. The perhaps non-obvious
equivalence CnC

T
n = CT

n used above is given by the symmetry and idempotence properties
of Cn, which can be easily derived based on this definition:

CT
n =

(
In −

1

n
Jn

)T
= ITn −

1

n
JTn = In −

1

n
Jn = Cn

C2
n =

(
In −

1

n
Jn

)2

= I2
n +

(
1

n
Jn

)2

− In
(

1

n
Jn

)
−
(

1

n
Jn

)
In

= In +
1

n2
J2
n −

2

n
Jn = In +

1

n2
(nJn)− 2

n
Jn = In −

1

n
Jn = Cn

and thus CnC
T
n = CnCn = Cn = CT

n .
A very similar reasoning can also be used to prove that, by mean centering all the word

embeddings in the target language dimension-wise, it is the sum (or average) dimension-
wise covariance that is maximized. This dimension-wise mean centering ensures that the
expected product of two random embeddings in any dimension is zero. Consequently, this
also makes the expected dot product between two random embeddings, which is equivalent
to the cosine product if they are length normalized as discussed in Section 7.1.3, to be
zero, capturing the intuition that two random words would not in principle be similar nor
dissimilar between them.

In order to prove the stated equivalence, it is convenient to express the above mini-
mization objective in terms of the Frobenius norm of the entire residual matrix:

arg max
W

∑
i

cov (Xi∗W,Zi∗) = arg min
W

∑
i

‖Xi∗W − Zi∗Cn‖2 = arg min
W

‖XW − ZCn‖2
F
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and observe that, just as ZCn mean centers the rows (i.e. each word embedding) in Z,
CvZ alternatively mean centers its columns (i.e. each dimension of the word embeddings).
Based on this, we can conveniently express the new optimization objective and prove the
stated equivalence:

arg min
W

‖XW − CvZ‖2
F = arg min

W

∑
i

‖XW∗i − CvZ∗i‖2

= arg min
W

∑
i

‖XW∗i‖2 + ‖CvZ∗i‖2 − 2 (XW∗i) · (CvZ∗i)

= arg max
W

∑
i

(XW∗i)
T (CvZ∗i)

= arg max
W

∑
i

W T
∗iX

TCvZ∗i

= arg max
W

∑
i

W T
∗iX

TCT
v CvZ∗i

= arg max
W

∑
i

(CvXW∗i) · (CvZ∗i)

= arg max
W

∑
i

cov (XW∗i, Z∗i)

where
∑

i ‖XW∗i‖ = ‖XW‖2
F = ‖X‖2

F holds thanks to the orthogonality constraint on W .
At the same time, it can be easily shown that mean centering the embeddings in both

languages dimension-wise instead of the target language ones alone does not affect this
optimization objective:

arg min
W

‖CvXW − CvZ‖2
F = arg max

W

∑
i

(CvXW∗i) · (CvZ∗i)

= arg max
W

∑
i

cov (XW∗i, Z∗i)

= arg min
W

‖XW − CvZ‖2
F

Nevertheless, this does not work for the initial optimization objective that maximized
the embedding-wise covariance. The reason for this is that, while the column mean cen-
tering is preserved after a linear transformation (i.e. (CvX)W = Cv(XW )) and can thus
be handled by applying the proposed optimization method over the precomputed ma-
trix CvX, the row mean centering is not preserved after a linear transformation, since
XCnW 6= XWCn.

7.1.5 Weighted and partial dictionaries

Our discussion so far has assumed that we had a bilingual dictionary of word embeddings
(X,Z), but we have not said much about the nature of this dictionary. Even though the
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conceptually simplest approach would be to limit ourselves to 1:1 correspondences, this
would not probably be realistic nor desirable in practice.

Instead of that, we extend our model to incorporate weights for the dictionary entries.
This allows to properly model words with different possible translations. For instance, the
word “book” is ambiguous in English, as it can be both a noun (bound pages) and a verb
(to reserve). Assuming that the distribution is 70-30%, we could therefore have one entry
in the dictionary for “book - libro” (bound pages) with a weight of 0.7 and another one
for “book - reservar” (to reserve) with a weight of 0.3. In addition to that, weights can
also be used for the confidence or frequency of the dictionary entries. For example, if the
dictionary is automatically extracted from a word aligned corpus (see Section 2.2), it might
be desirable to weight the dictionary entries according to the number of occurrences of the
aligned word pairs in the corpus. This would increase the influence of the most frequent
equivalences which, intuitively, are more likely to be correct and also more important to
get right for most practical applications, as they would also be more likely to occur later
on.

Incorporating this weighting schema in the proposed model is straightforward. If we
assign a weight of wi to the ith entry of the dictionary, we simply minimize the weighted
sum (or, equivalently, the weighted average) of the squared Euclidean distances according
to these weights for the original optimization objective:

arg min
W

∑
i

wi‖Xi∗W − Zi∗‖2

This is equivalent to multiplying the word embeddings in both languages with the square
root of their corresponding weight, so this weighted variant can be solved by simply doing
these multiplications in a preprocessing step and then applying the original method over
the resulting embeddings:

arg min
W

∑
i

‖√wiXi∗W −
√
wiZi∗‖2

It should be noted that this does not only serve for the basic optimization objective
in Section 7.1.1, but also for other variants discussed so far. For instance, it can be
easily shown that the weighted optimization objective with length normalization and the
orthogonality constraint on W maximizes the weighted average cosine similarity between
the dictionary entries. For that purpose, it is always necessary to apply the weighting in the
last place (after all the normalization steps), since the length normalization would otherwise
cancel the effect of the weighting in this case. As an exception, the effect of weighting on
dimension-wise mean centering and its relation to average dimension-wise covariance is
more subtle. In particular, in the weighted variant mean centering one language is not
equivalent to mean centering both depending on when the weighting is applied. We choose
to first mean center the embeddings in both languages4 and then apply the weighting, which

4Note that we mean center the monolingual word embeddings and not the columns in the bilingual
dictionary matrices, that is, even if an embedding has multiple (or zero) entries in the dictionary, we only
count it once
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Orthogonality Length norm. Mean centering Optimization objective
Average squared Euclidean distance

X Monolingually invariant average squared Euclidean distance
X X Monolingually invariant average cosine similarity
X X Monolingually invariant average covariance

Table 15: Different optimization objectives within the proposed framework

maximizes the average weighted covariance with unweighted mean centering. Alternatively,
it would be possible to first apply the weighting and then the mean centering, which would
maximize the average weighted covariance with weighted mean centering. However, we
think that our choice is more natural, since the weighting we introduce corresponds to the
bilingual correspondence and would not in principle be related to the expected value of the
monolingual embeddings in each dimension.

Finally, it is worth mentioning that, just as the proposed model can work with words
with several different weighted entries in the dictionary, the learned transformation can
also be applied over word embeddings with no entries in the dictionary. In fact, one could
reformulate the entire model to eliminate the notion of a strict dictionary and consider all
the possible combinations between the embeddings in both languages instead, assigning
them a weight analogous to that of the dictionary, which will be 0 for correspondences that
are unknown or do not exist in reality. Thanks to this, we are able to naturally incorporate
words without any known correspondence into the proposed model.

7.2 Relation to existing bilingual mapping methods

The framework proposed in the previous section starts with a basic optimization objective
and introduces several variations that are shown to be equivalent to other optimization
goals, which are summarized in Table 15. In this section, we analyze the relationship
between our model with all its variations and existing bilingual mapping methods proposed
in the literature. In particular, from Section 7.2.1 to 7.2.3 we compare our model to the
ones proposed in Mikolov et al. (2013b), Xing et al. (2015) and Faruqui and Dyer (2014),
respectively, which were introduced in Section 4.3.1. This serves not only to put our work
into context, but also to show the underlying connections between these other methods
themselves as part of the general framework we propose. This way, we provide a more global
view of bilingual mapping methods that we believe allows for a better understanding of
the different models and can motivate new ones in the future.

7.2.1 Mikolov et al. (2013b)

Even though the notation used is slightly different, the optimization objective in Mikolov
et al. (2013b) is completely equivalent to the basic one we propose in Section 7.1.1, and
they both minimize the average squared Euclidean distance between the dictionary entries.
Therefore, our work can be seen as an extension or generalization of it which, based on
this basic optimization objective, explores some constraints and normalizations without
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altering it in any fundamental way, which are shown to be equivalent to other meaningful
optimization goals.

The only difference between Mikolov et al. (2013b) and the basic case in our framework
is the optimization method used. While we propose an exact method based on the Moore-
Penrose pseudoinverse, which can be computed taking the SVD factorization of the source
language embedding matrix X, Mikolov et al. (2013b) use stochastic gradient descent
instead. We believe that our method has some clear advantages: it is exact (so it is
guaranteed to find the optimal solution), fast (it takes less than a second in experimental
settings similar to those in Mikolov et al. (2013b)) and can be formulated and reasoned
about analytically. As an example of this, it allows to precompute the pseudoinverse
X+, in which case the optimal mapping for any target language embedding matrix Z can
be conveniently calculated with a single matrix multiplication W = X+Z. In any case,
Mikolov et al. (2013b) do not publish their code nor do they give any detail about its
performance, so it is not easy to quantify this in practice. While we would not expect any
significant drop in quality or execution time from using stochastic gradient descent (which
is in fact likely to be faster for large dictionaries), we think that having an exact method
that can be expressed analytically is still desirable.

7.2.2 Xing et al. (2015)

Xing et al. (2015) argue that there are inconsistencies between the optimization objective
used to train word embeddings (maximum likelihood based on dot product), the similarity
measure typically used for these word embeddings (cosine similarity), and the optimization
objective used to learn the linear transformation in Mikolov et al. (2013b) (squared Eu-
clidean distance). Based on this, they propose constraining the word embedding training to
make them unit vectors, so that the dot product and cosine similarity become equivalent.
In addition to that, they maximize the average dot product (or, equivalently, the cosine
similarity) between the dictionary entries instead of minimizing their average squared Eu-
clidean distance to find the best linear transformation between them. So as to guarantee
that the word embeddings in the source language will also be unit vectors after applying
this mapping, they constrain it to be an orthogonal transformation.

This model is roughly equivalent to our optimization objective with the orthogonality
constraint and length normalization presented in Section 7.1.3. However, we next show that
our model provides an alternative theoretical justification that we believe is more accurate
and conceptually clearer, and also reveals some wrong assumptions in their argumentation.
At the same time, we argue that their optimization method is ill-founded and can be quite
inefficient, while ours is exact and very fast.

Before getting into that, it should be noted that there is one factor that we leave
aside in our discussion, which has to do with the length normalization approach. While
Xing et al. (2015) constrain the word embedding training itself to enforce this length
normalization, we learn the word embeddings normally and apply the length normalization
afterwards5. While we do not see a clear reason why their approach should learn better

5In principle, this length normalization would only be used to learn the optimal transformation, which
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word embeddings as they argue (even if it is true that the word embedding training is
based on the dot product and the cosine similarity is typically used instead, it should be
noted that this dot product is applied between word vectors and context vectors, and not
between the word vectors themselves, and can serve to weight different words depending
on their frequency), we consider that this is out of the scope of our work. The method
used to normalize the word embeddings is not relevant for our work, as it does not affect
the learning of the optimal bilingual mapping in any fundamental way neither from a
theoretical nor a practical perspective. This way, the normalization method in Xing et al.
(2015) is perfectly compatible with the rest of our model, just as our normalization method
is perfectly compatible with the rest of their model, so they can be used and reasoned about
interchangeably.

When it comes to the bilingual mapping itself, the first difference between the reason-
ing of Xing et al. (2015) and ours lies in the motivation for the orthogonality constraint.
Xing et al. (2015) argue that “the projected vector Wxi has to be normalized, which is
not guaranteed so far” and propose that “the normalization constraint on word vectors
can be satisfied by constraining W as an orthogonal matrix”. This way, they incorporate
the orthogonality constraint as a way to preserve length normalization. In contrast, our
motivation for the same constraint has to do with the wider concept of monolingual invari-
ance: the fact that, after an orthogonal transformation, all the fundamental properties and
relations in the original vector space are preserved (not only the length normalization, but
also the cosine similarity, the Euclidean distance and the Euclidean norm). This notion
of monolingual invariance implies that, if vec(“France”) is most similar to vec(“Spain”),
or if vec(“France”) − vec(“Paris”) + vec(“Germany”) is most similar to vec(“Berlin”) in
the original vector space, this should keep being so after the bilingual mapping, and pre-
serving all this fundamental relations, in general, can only be guaranteed by an orthogonal
transformation. This way, the orthogonality constraint serves, in the first place, to pre-
vent a degradation in monolingual quality, but also to enforce a relevant property that
such transformation should intuitively have, which could be useful to avoid degenerated
solutions and learn even better bilingual mappings. All in all, we argue that the rationale
for such orthogonality constraint goes far beyond preserving length normalization: while
alternatives for preserving length normalization exist (e.g. applying another normalization
after the linear transformation as Wxi

‖Wxi‖), there is a clear motivation for the orthogonality
constraint even when no length normalization is performed.

Apart from that, Xing et al. (2015) argue that “the ‘closeness’ of words in the pro-
jection space is measured by the cosine distance, which is fundamentally different from
the Euclidean distance in the objective function min

∑
i ‖Wxi − zi‖2 and hence causes

inconsistence”, and they “solve this problem by using the cosine distance in the transform
learning”. However, we show that this point is completely wrong, since no such inconsis-
tency exists in reality. In Section 7.1.3 we prove that, with the length normalization and
orthogonality constraint, minimizing the average squared Euclidean distance is equivalent
to maximizing the average cosine similarity. What is more, in Section 7.1.2 we already show

would then be applied to the original embeddings, but it can also be done globally
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that, even without the length normalization, minimizing the average squared Euclidean dis-
tance is equivalent to maximizing the average dot product as long as the transformation
is constrained to be orthogonal. Note that the requirement of the orthogonality constraint
for such equivalence to hold does not condition the motivation to incorporate such con-
straint in either work, as preserving the length normalization in their case, or enforcing
the monolingual invariance in ours is completely independent from the objective function
used.

This way, while Xing et al. (2015) point out that “this inconsistence [between the
different objective functions and similarity measures] may lead to suboptimal estimation
for both word vectors and the bilingual transform” and consequently “the cosine distance
is used [in their work] when we train the orthogonal transform, in order to achieve full
consistence”, we show that this reasoning is flawed. We prove that the only real difference
between their bilingual mapping method and that of Mikolov et al. (2013b) is the length
normalization and the orthogonality constraint, and not the objective function used, which
is completely equivalent under these conditions. This way, from a theoretical standpoint
any gain of Xing et al. (2015) over Mikolov et al. (2013b) can only come from these
length normalization and orthogonality constraint they incorporate, and not from solving
an inconsistency in the optimization objective for the bilingual mapping, as they argue.
Later in Section 7.3, we empirically show that all the improvement actually comes from
the orthogonality constraint alone, since the length normalization does not have any clear
effect in our experiments. Considering that, as discussed before, the only motivation in
Xing et al. (2015) to enforce such orthogonality constraint is precisely preserving the length
normalization, we therefore think that our reasoning is not only conceptually clearer, but
also more consistent with the observed behavior.

Finally, the optimization method used by Xing et al. (2015) is also different from the
one we propose, which we think is better founded, simpler, more efficient and easier to
implement. Xing et al. (2015) use a modified version of gradient descent that enforces the
orthogonality constraint after each update. More precisely, they compute the gradient as
∇W =

∑
i xiy

T
i and update the weights as W = W + α∇W , where α is the learning rate.

After that, they set W to its closest orthogonal matrix:

arg min
W̄

‖W − W̄‖ s.t. W̄ T W̄ = I

which they solve using the SVD factorization of W . Interestingly, when W is initialized to
all-zeros and the gradient is computed over the entire training set, the value that W will
take after the first iteration is the exact solution that our method would compute regardless
of the learning rate α, since the computations performed in both cases (essentially, taking
the SVD factorization of ZTX = UΣV T and setting W to V UT ) would be completely
equivalent under these conditions. However, this only shows that, under some particular
settings, the modified gradient descent finds the optimal solution, but it is not clear what
would happen if W were initialized randomly, the gradient were computed over smaller
batches, or more iterations were performed. Even if it were proved that the modified gra-
dient descent would still converge to the optimal solution, we think that our method would
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still have the advantage of being conceptually clearer, the possibility of being expressed
analytically, and the fact that it would always be at least as fast as this modified gradi-
ent descent, since the simplest possible scenario for it is the one that performs the same
computations as our method as discussed previously.

7.2.3 Faruqui and Dyer (2014)

Unlike all the previous methods that attempt to learn the optimal mapping from one
language to the other, Faruqui and Dyer (2014) use a well-known statistical technique called
canonical correlation analysis (CCA) to project the word embeddings in both languages
to a common vector space. More concretely, following our notation CCA finds the vectors
a and b so that the Pearson correlation between the projected embeddings U = Xa and
V = Zb, known as the first pair of canonical variables, is maximal:

arg max
a,b

corr(Xa,Zb)

After that, CCA finds the second pair of canonical variables, which is the one maximizing
the same correlation subject to the constraint that it is uncorrelated with the first pair
of canonical variables, and the process is repeated until the desired amount of canonical
variables, each of them uncorrelated with the rest, is obtained. This way, if we stack the
projection vectors for each language as columns of a wider matrix, we obtain the transfor-
mation matrices A and B that project the original word embeddings in their corresponding
language to a common vector space. Although by limiting the amount of canonical vari-
ables this can also be used to perform dimensionality reduction, as Faruqui and Dyer
(2014) themselves explore in their work, we do not consider this factor here to simplify the
comparison with our method, and come back to it later in the experiments in Section 7.3.

In order to get better insight into what transformations CCA actually learns, it is
convenient to reduce all this to a global optimization objective. The maximization term
itself is straightforward to express as the sum of the correlation of all canonical variables∑

i corr (XA∗i, ZB∗i). As for the constraint that different canonical variables should be
uncorrelated among themselves, we take advantage of the fact that the Pearson corre-
lation between two variables is 0 if and only if their covariance is also zero. This way,
different canonical variables will only be uncorrelated when their covariance is zero and,
therefore, when the covariance matrices of the projected embeddings, which correspond to
1
v
(CvXA)T (CvXA) = 1

v
ATXTCvXA and 1

v
(CvZB)T (CvZB) = 1

v
BTZTCvZB, are diago-

nal. Based on this, the global optimization objective of CCA can be expressed as follows:

arg max
A,B

∑
i

corr (XA∗i, ZB∗i) s.t. ∀i 6= j, (ATXTCvXA)ij = (BTZTCvZB)ij = 0

This expression can be further simplified by taking advantage of the fact that correlation
is invariant to the scaling of variables and, therefore, to the scaling of the projection vectors
learned by CCA, which correspond to the columns of A and B. This way, it is possible to fix
the length of these projection vectors so that the canonical variables have a variance of 1,
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in which case the Pearson correlation becomes equivalent to the covariance. Furthermore,
scaling all these variances by a constant, like the length of the dictionary, would only
multiply all covariances by the reciprocal of that constant, and would therefore not affect
the global optimization objective. Based on this, the optimization objective of CCA can
also be formulated as follows:

arg max
A,B

∑
i

cov (XA∗i, ZB∗i) s.t. ATXTCvXA = BTZTCvZB = I

This expression clearly resembles the optimization objective of our method with dimension-
wise mean centering and the orthogonality constraint discussed in Section 7.1.4:

arg max
W

∑
i

cov (XW∗i, Z∗i) s.t. W TW = I

As it can be seen, there are only two differences between our optimization objective
and that of Faruqui and Dyer (2014): the fact that they learn two linear transformations,
one for each language, to project the word embeddings to a common vector space, while
we use a single transformation that projects the source language embeddings to the target
language, and the constraint imposed on these transformations.

So as to get better insight into these differences, we first analyze what would happen if
we introduced an additional orthogonal transformation for the target language embeddings
in our optimization objective. For that purpose, it is first convenient to reformulate the
original optimization objective as follows:

arg max
W

∑
i

cov (XW∗i, Z∗i) = arg max
W

∑
i

(CvXW∗i) · (CvZ∗i)

= arg max
W

∑
i

W T
∗iX

TCvZ∗i

= arg max
W

Tr
(
W TXTCvZ

)
The objective function for the variant with two transformations can be similarly for-

mulated as follows:

arg max
W

∑
i

cov (XA∗i, ZB∗i) = arg max
W

Tr
(
ATXTCvZB

)
= arg max

W
Tr
(
BATXTCvZ

)
This shows that there is a direct connection between the two variants: when both A

and B are constrained to be orthogonal matrices, BAT will also be an orthogonal matrix,
so BAT = W T . A trivial yet optimal solution will therefore be to take A = W and B = I,
which clearly shows that transforming both languages instead of a single one does not
increase the expressive power of the model under such orthogonality constraint. In fact,
it is possible to set B to any arbitrary orthogonal matrix, in which case an optimal solu-
tion with A = WB still exists, which is conceptually equivalent to applying our original
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transformation W to X and then applying such arbitrary (yet orthogonal and, therefore,
invariant with respect to all the fundamental properties and relations of the original em-
beddings as discussed in Section 7.1.2) transformation B to both languages. Moreover,
this also applies to the basic unconstrained optimization objective presented in Section
7.1.1 since, when A and B are linear transformations, W T = BAT will also be a linear
transformation.

This way, the fundamental difference between Faruqui and Dyer (2014) and the pro-
posed model does not lie in the fact that the former transform both languages while we
transform a single one, but the constraint imposed on these transformations. In fact, it is
precisely because of the chosen constraints that our model cannot benefit from transform-
ing the target language embeddings, whereas CCA does need both transformations to find
the optimal solution.

However, a closer look of the constraints shows that they are not that different in reality.
In fact, when XTCvX = ZTCvZ = I the constraints become completely equivalent. This
can be extended to any scalar matrix λI for each language independently, since this would
only scale the covariance by a constant and would therefore not affect the objective function.
Given that 1

v
XTCvX is the covariance matrix of X and 1

v
ZTCvZ is the covariance matrix

of Z, what this means is that different dimensions of the word embeddings in each language
should have the same variance and be uncorrelated among themselves. Even if the training
of word embeddings does not strictly enforce these conditions, they do feel quite intuitive in
practice. On the one hand, different dimensions of the word embeddings should intuitively
encode different (and not redundant) information, so their correlation should be very low.
At the same time, it makes sense that the dispersion in each dimension should be similar,
since each dimension should intuitively encode a similar amount of information. Under
these assumptions, the conditions in question would hold approximately, so the mapping
learned by Faruqui and Dyer (2014) and our method would be similar.

Therefore, both our method and Faruqui and Dyer (2014) coincide on maximizing the
average dimension-wise covariance, and the only fundamental difference between them is
that, while our model enforces monolingual invariance, Faruqui and Dyer (2014) do change
the monolingual embeddings to make different dimensions have the same variance and be
uncorrelated among themselves. Even if, as discussed before, these two constraints on the
projected embeddings do somehow feel intuitive, we think that mixing both aspects (learn-
ing the optimal mapping and enforcing certain properties for the monolingual embeddings)
in a single method is not only conceptually confusing, but might also be suboptimal. We
consider that, if these properties were actually desirable, the training of the monolingual
word embeddings should be adapted to enforce them in the first place6 and, if this were
done, the method of Faruqui and Dyer (2014) and ours would be equivalent for those em-
beddings. On the contrary, we think that mixing these two aspects could have a negative
impact on the learning of the bilingual mapping, and it could also degrade the quality of
the monolingual embeddings. Our experiments later in Section 7.3 show empirical evidence
supporting this idea.

6Alternatively, this might also be done in a postprocessing step

Language Analysis and Processing



Distributional Semantics and Machine Learning for SMT 83/112

7.3 Experiments on word translation induction

In this section, we experimentally test the proposed framework and all its variants presented
in Section 7.1 in comparison with the related methods discussed in Section 7.2. For that
purpose, we use the translation induction task introduced by Mikolov et al. (2013b), which
learns a bilingual mapping on a small dictionary and measure its accuracy on predicting
the translation of new words (see Section 4.4.2). In order to get a more complete picture of
the behavior of the different systems, we measure the top 1, top 5 and top 10 accuracies.
However, Mikolov et al. (2013b) do not share their dataset and use Google Translate, a
commercial online service that is updated continuously, to build their bilingual dictionary,
so their experiments cannot be replicated with precision. For that reason, we use the
English-Italian dataset on the same task provided by Dinu et al. (2014), which can be
freely downloaded from its website7. The dataset contains monolingual word embeddings
trained with the word2vec toolkit using the CBOW method with negative sampling (see
Section 4.1). The context window was set to 5 words, the dimension of the embeddings
to 300, the sub-sampling to 1e-05 and the number of negative samples to 10. The English
embeddings were trained on a 2.8 billion word corpus (ukWaC + Wikipedia + BNC), while
the 1.6 billion word corpus itWaC was used to train the Italian embeddings. In addition
to that, the dataset contains a bilingual dictionary learned from Europarl, split into a
training set of 5,000 word pairs and a test set of 1,500 word pairs, both of them uniformly
distributed in frequency bins of [1-5K], [5K-20K], [20K-50K], [50K-100K] and [100K-200K].

Apart from the performance of the projected embeddings in bilingual terms, we are
also interested in the monolingual quality of the source language embeddings after the
projection. For that purpose, we use the word analogy task proposed by Mikolov et al.
(2013a), which measures the accuracy on answering questions like “what is the word that
is similar to small in the same sense as biggest is similar to big?” using simple word vector
arithmetic (see Section 4.1). The dataset they use consists of 8,869 semantic and 10,675
syntactic questions of this type, and is publicly available as part of the word2vec toolkit. In
order to speed up the experiments, we perform an approximate evaluation by reducing the
vocabulary size according to a frequency threshold of 30,000, as suggested by the authors.
Since the original embeddings are the same in all the cases and it is only the transformation
that is applied to them that changes, this affects all the methods in the exact same way,
so the results are perfectly comparable among themselves. With these settings, we obtain
a coverage of 64.98%.

We implemented the proposed method in Python using NumPy, an open source pack-
age for scientific computing. Following the discussion in Section 7.1, we tested 5 different
preprocessing strategies in addition to not performing any preprocessing at all: 1) length
normalization (unit), 2) mean centering each target language embedding (trg-word-center),
3) dimension-wise mean centering (dim-center), 4) length normalization followed by mean
centering each target language embedding (unit + trg-word-center) and 5) length normal-
ization followed by dimension-wise mean centering (unit + dim-center). In all the cases,

7http://clic.cimec.unitn.it/%7Egeorgiana.dinu/down/
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we tested the unconstrained variant and the variant with the orthogonality constraint and,
when relevant, we also tested applying the preprocessing globally (i.e. not only learning
the bilingual mapping over the normalized embeddings but also applying it to these nor-
malized embeddings instead of the original ones). As for the method by Faruqui and Dyer
(2014), we used their original implementation in Python and MATLAB, which is publicly
available at GitHub8. However, this code does not account for cases where the dictionary
contains more than one entry for the same word, as the dataset we use does, so we modified
it accordingly to fix this issue. As mentioned in Section 7.2.3, Faruqui and Dyer (2014)
also perform dimensionality reduction when applying CCA, which we also tested in steps
of 10%. In addition to that, even if it is not described in the original paper, their imple-
mentation allows to learn a single transformation to map the embeddings in one language
to the other instead of learning two transformations to project them to a shared vector
space, and we also tested this variant. Following the notation in Section 7.2.3, they simply
set W = AB−1 for that so, in this case, no dimensionality reduction can be performed.
Finally, the code for Mikolov et al. (2013b) and Xing et al. (2015) is not publicly avail-
able, so we implemented and tested them as part of the proposed framework, which only
differs from the original systems in the optimization method (exact solution instead of
gradient descent) and the length normalization approach in the case of Xing et al. (2015)
(postprocessing instead of constrained training).

The obtained results are shown in Table 16. As it can be seen, the method by Xing
et al. (2015) performs consistently better than that of Mikolov et al. (2013b) in the trans-
lation induction task, which is in line with what they report in their paper. Moreover,
thanks to the orthogonality constraint their monolingual performance in the word analogy
task does not degrade, whereas the accuracy of Mikolov et al. (2013b) drops by 2.86% in
absolute terms with respect to the original embeddings. However, it is remarkable that
several configurations of Faruqui and Dyer (2014) beat the method by Xing et al. (2015) in
the bilingual task, although this comes at the price of a considerable degradation in mono-
lingual quality. More concretely, when the embeddings in both languages are projected
to a shared space, the bilingual performance improves as the dimensionality is reduced up
to around 50%, where it starts to degrade. The monolingual performance is harmed even
when no dimensionality reduction is applied, in particular for the syntactic analogies (an
absolute drop of 6.95% with respect to the original embeddings in contrast with 1.67% for
the semantic analogies), and is further accentuated as the dimension of the embeddings is
reduced, in particular for the semantic analogies (an absolute drop of 9.26% when going
from 100% to 50% in contrast with only 1.35% for the syntactic analogies). In comparison,
the direct mapping variant does not affect monolingual quality as much (an absolute drop
of 2.39% with respect to the original embeddings, less than the 2.86% of Mikolov et al.
(2013b)), and it also achieves a better top 1 accuracy with 38.7%, an improvement of
1.8% with respect to Xing et al. (2015) and 3.8% with respect to Mikolov et al. (2013b).
However, the top 5 and top 10 accuracies are slightly worse than when applying a dimen-
sionality reduction of 50% with the shared space variant, but still better than those of Xing

8https://github.com/mfaruqui/crosslingual-cca
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et al. (2015) and Mikolov et al. (2013b).
In any case, it is the proposed method with the orthogonality constraint and a global

preprocessing with length normalization followed by dimension-wise mean centering that
achieves the best top 1, top 5 and top 10 accuracies in the word translation induction task.
Moreover, it does not suffer from any considerable degradation in monolingual quality, with
an anecdotal drop of only 0.07% with respect to the original embeddings, in contrast with
more than 2% for Mikolov et al. (2013b) and Faruqui and Dyer (2014). Therefore, it can
be said that it is this variant of the proposed method that gives the best overall results,
as it clearly offers the best bilingual performance along with a monolingual performance
at par with Xing et al. (2015) and considerably superior to Mikolov et al. (2013b) and
Faruqui and Dyer (2014).

A closer look at the different variants of the proposed model reveals that all the con-
figurations with the orthogonality constraint get better results than their unconstrained
counterparts for all the metrics considered, without any single exception. This is a very
strong evidence in favor of our hypothesis that the orthogonality constraint does not only
prevent a degradation in monolingual performance, but it also improves bilingual perfor-
mance by enforcing a relevant property (monolingual invariance) that the transformation
to learn should intuitively have.

As for the different preprocessing configurations tested, we first observe that length
normalization alone does not prove to be beneficial. When applied together with the
orthogonality constraint, it improves the top 1 accuracy in the translation induction task by
only 0.2%, while degrading the top 5 and top 10 accuracies by 0.1% and 0.7%, respectively.
Together with the previous point, this reinforces our theoretical interpretation in Section
7.2.2 for the method by Xing et al. (2015), as it empirically shows that its improvement
with respect to Mikolov et al. (2013b) comes solely from the orthogonality constraint, and
not from solving any kind of inconsistency.

Apart from that, we observe that mean centering each target language embedding for
embedding-wise covariance maximization does not bring any improvement either. However,
dimension-wise mean centering for dimension-wise covariance maximization does prove
to be beneficial. Moreover, when this preprocessing is applied globally, preceding this
dimension-wise mean centering by length normalization further improves bilingual perfor-
mance, achieving the best overall results as discussed above. Interestingly, this is the only
instance where either applying the normalization globally or preceding the mean centering
by length normalization yields to a clear improvement in the word translation induction
task.

It should be noted that, even if it is not mentioned in the paper, the implementation by
Faruqui and Dyer (2014) also length normalizes the word embeddings in a preprocessing
step. Following the discussion in Section 7.2.3, this means that our best performing con-
figuration is conceptually very close to the method by Faruqui and Dyer (2014), as they
both coincide on maximizing the average dimension-wise covariance and length normalize
the embeddings in both languages first, the only difference being that our model enforces
monolingual invariance after the normalization while theirs does change the monolingual
embeddings to make different dimensions have the same variance and be uncorrelated
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EN-IT TRANSLATION EN ANALOGIES
(bilingual performance) (monolingual performance)
P@1 P@5 P@10 Sem. Synt. Total

Original embeddings - - - 79.66% 75.36% 76.66%

Mikolov et al. (2013b)* 34.9% 49.1% 54.5% 73.07% 74.12% 73.80%

Xing et al. (2015)* 36.9% 52.7% 57.9% 79.66% 75.36% 76.66%

Faruqui and Dyer (2014)
(shared space)

n=30 (10%) 24.7% 39.7% 44.3% 22.24% 39.98% 34.61%
n=60 (20%) 34.3% 49.7% 55.2% 43.42% 57.58% 53.30%
n=90 (30%) 36.6% 53.6% 58.7% 58.43% 64.66% 62.78%
n=120 (40%) 37.8% 55.0% 60.9% 66.13% 66.15% 66.15%
n=150 (50%) 37.4% 55.5% 61.4% 68.73% 67.06% 67.56%
n=180 (60%) 37.8% 54.4% 59.3% 72.06% 68.58% 69.64%
n=210 (70%) 37.4% 54.1% 59.0% 74.53% 68.74% 70.49%
n=240 (80%) 35.8% 53.5% 58.5% 75.83% 68.91% 71.01%
n=270 (90%) 34.5% 50.7% 56.9% 75.70% 68.80% 70.89%
n=300 (100%) 32.4% 49.1% 54.1% 77.99% 68.41% 71.31%

Faruqui and Dyer (2014) (direct mapping) 38.7% 55.1% 60.5% 77.86% 72.72% 74.27%

Proposed method
(unconstrained)

- 34.9% 49.1% 54.5% 73.07% 74.12% 73.80%
unit 33.8% 48.3% 53.9% 72.92% 73.91% 73.61%

trg-word-center 34.8% 49.1% 54.1% 72.87% 74.15% 73.76%
dim-center 37.3% 51.9% 56.3% 73.13% 74.33% 73.97%

unit + trg-word-center 34.1% 48.1% 53.7% 72.97% 73.98% 73.68%
unit + dim-center 30.4% 45.3% 49.4% 72.94% 73.70% 73.47%

Proposed method
(orthogonal transform)

- 36.7% 52.8% 58.6% 79.66% 75.36% 76.66%
unit 36.9% 52.7% 57.9% 79.66% 75.36% 76.66%

trg-word-center 36.8% 53.0% 58.1% 79.66% 75.36% 76.66%
dim-center 38.0% 54.8% 59.8% 79.66% 75.36% 76.66%

unit + trg-word-center 36.8% 52.7% 58.2% 79.66% 75.36% 76.66%
unit + dim-center 37.1% 53.5% 58.4% 79.66% 75.36% 76.66%

Proposed method
(unconstrained +

global normalization)

trg-word-center 34.7% 49.1% 54.2% 72.87% 74.15% 73.76%
dim-center 37.8% 53.4% 59.1% 73.49% 74.42% 74.14%

unit + trg-word-center 33.8% 48.3% 54.0% 72.97% 73.98% 73.68%
unit + dim-center 38.5% 55.9% 60.5% 73.07% 73.99% 73.71%

Proposed method
(orthogonal transform +

global normalization)

trg-word-center 36.7% 52.8% 58.4% 79.66% 75.36% 76.66%
dim-center 37.9% 54.9% 60.5% 79.47% 75.49% 76.70%

unit + trg-word-center 37.1% 52.6% 58.1% 79.66% 75.36% 76.66%
unit + dim-center 39.3% 56.3% 61.7% 79.63% 75.27% 76.59%

Table 16: Results on English-Italian word translation induction. The best results for each
method (denoted by blocks separated by double lines) are given in bold, and the best overall
results are underlined. Mikolov et al. (2013b) and Xing et al. (2015) are implemented as
part of the proposed framework, using our length normalization and exact optimization
methods.

Language Analysis and Processing



Distributional Semantics and Machine Learning for SMT 87/112

among themselves. However, our model performs considerably better than any config-
uration from Faruqui and Dyer (2014) in both the monolingual and the bilingual task,
supporting our hypothesis in Section 7.2.3 that these two constraints that are implicit in
their method are not only conceptually confusing, but also have a negative impact.

To sum up, our experiments show the effectiveness of the proposed model and give
strong empirical evidence in favor of our theoretical reasoning in Section 7.2. It is the pro-
posed method with the orthogonality constraint and a global preprocessing with length nor-
malization and dimension-wise mean centering that achieves the best overall results both
in monolingual and bilingual terms, clearly surpassing the previous methods by Mikolov
et al. (2013b), Xing et al. (2015) and Faruqui and Dyer (2014). Moreover, the obtained
results support our alternative interpretation for Xing et al. (2015) and Faruqui and Dyer
(2014) in relation to the proposed framework.

7.4 Conclusions

In this chapter, we have proposed a general framework to learn bilingual word embedding
mappings. It starts with a basic optimization objective that is equivalent to the previ-
ous model by Mikolov et al. (2013b) and allows for several variants that we prove to be
equivalent to other meaningful and relevant optimization objectives in close relation to
the previous methods by Xing et al. (2015) and Faruqui and Dyer (2014). This way, our
framework provides a more global view of bilingual word embedding mappings, showing
the underlying connection between the existing methods, revealing some flaws in their
theoretical justification and providing an alternative theoretical interpretation for them.
Our experiments on an existing English-Italian word translation induction and an English
word analogy task give strong empirical evidence in favor of our theoretical reasoning, while
showing that a variant of the proposed model clearly outperforms all the previous methods
tested. More concretely, our model achieves the best bilingual performance in the word
induction task, while preventing a degradation in monolingual quality and consequently
performing at par with Xing et al. (2015) and considerably better than the rest of the
methods in the monolingual word analogy task.
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8 Bilingual word embeddings for phrase translation

similarity scoring

In this chapter, we explore the use of bilingual word embeddings for phrase translation
similarity scoring. Unlike many of the previous approaches discussed in Section 4.4.1,
which train bilingual phrase embeddings from scratch using complex architectures, we use
different metrics to directly compute a phrase similarity score over bilingual word embed-
dings. A simple yet widely used measure in this regard is the centroid cosine similarity,
which we analyze from a theoretical perspective in Section 8.1. Section 8.2 then proposes
three alternative measures that address some of the issues of centroid cosine similarity as
pointed by our analysis. In Section 8.3, we experimentally test the proposed measures
with different bilingual word embedding methods, including our bilingual mapping model
in Chapter 7, on English-Spanish phrase translation selection. Finally, Section 8.4 applies
them to end-to-end English-Spanish machine translation, and Section 8.5 concludes the
chapter.

8.1 Analysis of centroid cosine similarity

As discussed in Section 4.1, the cosine similarity is typically used to measure the semantic
similarity of two words from their embeddings. Recall that, given two vectors x and y,
their cosine similarity cos (x, y) is given by their normalized dot product:

cos (x, y) =
x · y
‖x‖‖y‖

However, it is not trivial to generalize this to measure the semantic similarity of larger
phrases. As discussed in Section 4.4.1 for the specific field of MT, there is a considerable
research effort on learning embedding representations for the phrases themselves, which
mostly rely on recurrent or recursive neural networks that compose individual word vec-
tors iteratively. Nevertheless, these techniques are often task specific, tend to use complex
architectures that are expensive to train, and typically learn not only the phrase embed-
dings themselves, but also the underlying word embeddings from scratch.

For that reason, a simple yet widely used approach is to take the centroid of the
word embeddings in each phrase and use the cosine similarity over these centroids as a
measure of their semantic similarity. These centroids can be seen as continuous bag-of-
words representations of phrases, which in fact gives its name to the CBOW architecture to
learn word embeddings as seen in Section 4.1. In spite of the popularity of this technique,
the relation between the centroid cosine similarity and the underlying word embeddings is
not obvious, and works using it in the literature do not generally give any insight in this
regard. This way, we next analyze what the centroid cosine similarity actually computes.

Let x1, . . . , xn and y1, . . . , ym be the embeddings of the words in two phrases. Their
centroid or arithmetic mean is given by 1

n

∑n
i=1 xi and 1

m

∑m
i=1 yi, respectively, so the cosine
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similarity between them corresponds to the following:
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As it can be seen, the numerator in the last expression, which also corresponds to the dot
product of the centroids, is the average dot product of all the word combinations between
both phrases. The denominator is the square root of the average dot product of all the
word combinations within each phrase, and serves to normalize it so that it takes a value
between -1 and 1. Since, from the definition of the cosine similarity, x·y = ‖x‖‖y‖ cos (x, y),
this can be rewritten as follows:

1
nm

∑n
i=1

∑m
j=1 ‖xi‖‖yj‖ cos (xi, yj)√

1
n2

∑n
i=1

∑n
j=1 ‖xi‖‖xj‖ cos (xi, xj)

√
1
m2

∑m
i=1

∑m
j=1 ‖yi‖‖yj‖ cos (yi, yj)

Therefore, the centroid dot product can also be seen as the average cosine similarity of
all the word combinations between both phrases multiplied by their length, so that longer
vectors have more influence than shorter ones. Similarly, the normalization term in the
denominator corresponds to the square root of the average cosine similarity of all the word
combinations within each phrase multiplied by their length.

It is particularly interesting to see what happens when the word embeddings are nor-
malized, that is, ∀i, j, ‖xi‖ = ‖yj‖ = 1, which can be done by dividing all the vectors by
their actual norm. This normalization is quite common, as the length of word embeddings
does not generally carry any clear meaning (in fact, the cosine similarity itself is indepen-
dent from the length of the vectors and can be seen as a normalized dot product). In this
case, the cosine similarity of two phrase centroids corresponds to the following:
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Consequently, the dot product of the centroids of two phrases with normalized word
embeddings, which corresponds to the numerator in the above expression, is the average
cosine similarity of all the word combinations between both phrases. At the same time,
the Euclidean norm of the centroid of a phrase with normalized word embeddings, which
corresponds to the two factors in the denominator above, is the square root of the average
cosine similarity of all the word combinations within that phrase. Intuitively, the centroid
cosine similarity thus measures the similarity between two phrases according to the average
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similarity of all the word combinations between them, and then normalizes this value by
compensating phrases with very different words within them.

Even though this clearly explains why and how the centroid cosine similarity works
and its relation with the underlying word embeddings, it also raises a question of how
appropriate it is. Intuitively, we would asses the similarity between “a famous artist” and
“two prestigious painters”, for example, according to the similarity between “a” and “two”,
“famous” and “prestigious”, and “artist” and “painters”. It does not feel intuitive to also
consider, as the centroid cosine similarity would, the similarity between all the other word
combinations between and within the phrases such as “famous” and “painters”, “a” and
“artist”, or “two” and “famous”, and even less to give the same importance to all of them
or to weight them according to the length of their word embeddings, which does not carry
any clear meaning. For that reason, in the next subsection alternative word embedding
based phrase similarity measures that are closer to the human intuition are proposed.

8.2 Proposed phrase similarity measures

As seen in the previous section, in spite of the popularity of the centroid cosine similarity,
a closer analysis of it reveals that what it actually computes has little to do with how
humans would measure phrase similarity based on word similarity. For that reason, we
propose the following phrase similarity measures that we believe better capture the human
intuition:

• Arithmetic mean of closest word cosine similarity. As seen before, the centroid
cosine similarity of two phrases is essentially a normalized average of the cosine
similarity of all the word combinations between both phrases. However, a human
would intuitively consider each word in relation with its semantic counterpart in the
other phrase, if any. Even though we do not in principle have any prior alignment,
it feels intuitive that each word would most likely be related to the one that is most
similar to it in the other phrase. Based on this, we can estimate phrase similarity by
taking the average cosine similarity between each word and its closest counterpart in
the other phrase as measured by cosine similarity itself:∑n

i=1 maxj cos (xi, yj) +
∑m

i=1 maxj cos (yi, xj)

n+m

This is in line with the measure proposed by Mihalcea et al. (2006) to combine word-
to-word similarity scores for text semantic similarity scoring, with the difference
that we take an unweighted average and specifically adapt the measure for cosine
similarity. It should be noted that, even though it might not seem obvious at first,
it is actually necessary to take the closest word in both directions as in the above
formula to account for cases where there is missing or additional information in one
of the phrases. More concretely, if only one direction were considered, the target
phrase having extra words with no counterpart in the source phrase would not have
any negative effect, whereas the target phrase missing information would be heavily
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penalized. By considering both directions, we overcome this issue and preserve the
symmetry of the similarity measure.

• Product of closest word normalized cosine similarity. Levy and Goldberg
(2014a) point out that, when taking the sum of different cosine similarities, one
sufficiently large term tends to dominate the result, which they consider problematic
in their setting where each word embedding represents a different aspect of similarity
in its own scale. For instance, they argue that “king” is more royal than masculine,
which might overshadow the gender aspect in their similarity measure. Based on
this, they propose taking the product of the different cosine similarities instead of
their sum, obtaining a considerable improvement in an analogy task.

Even if we are dealing with a quite different task, a similar issue might also arise when
taking the arithmetic mean of different cosine similarities as the previous measure
or the centroid cosine similarity itself do. For example, “the king said something”
might be considered more similar to “the parrot said something” than “the man
mentioned something” since, assuming that the royalty aspect is indeed central to
“king”, both “man” and “parrot” could be very far from it, possibly making the
absolute difference between their similarities insufficient to compensate the nuance
between “said” and “mentioned” (e.g. if cos(king,man) = 0.2, cos(king, parrot) =
0.1 and cos(said,mentioned) = 0.8).

Based on this, we can take the product of the cosine similarity between each word
and its closest counterpart in the other phrase instead of their arithmetic mean.
However, this would be problematic if negative cosine similarities were involved. For
that reason, instead of directly taking the cosine similarity we normalize its value to
[0, 1]:

n∏
i=1

max
j

1 + cos (xi, yj)

2

m∏
i=1

max
j

1 + cos (yi, xj)

2

• Product of closest word thresholded cosine similarity. The previous measure
normalized cosine similarity to [0, 1] to avoid negative values in the multiplication.
However, it should be noted that the expected cosine similarity between two random
vectors is 0, so one can expect that this will rarely occur in practice: even if a given
word has no direct counterpart in the other phrase, odds are that the cosine similarity
with some word on it is still greater than 0. In addition to that, a very small closest
word similarity is likely to indicate that the information in question is not present in
the other phrase, so the exact value it takes is arguably irrelevant. For that reason,
an alternative to normalizing cosine similarities is to take a small positive threshold
ε so that all cosine similarities below it are replaced with it:

n∏
i=1

max(ε,max
j

cos (xi, yj))
m∏
i=1

max(ε,max
j

cos (yi, xj))

Language Analysis and Processing



Distributional Semantics and Machine Learning for SMT 93/112

It should be noted that these similarity measures behave differently when it comes to
the length of the phrases. For the first measure, each term can have a negative or positive
impact in the final score with respect to the others, so different length phrase pairs are
scored in the same scale. As a consequence, “good car” and “excellent book” would get a
higher similarity score than “car” and “book” alone, since the semantic closeness between
“good” and “excellent” would make up for the big distance between “car” and “book”. In
contrast, for the other two measures each term can only have a negative impact in the final
score9, so longer phrase pairs will tend to have lower similarities. As a consequence, “car”
and “book” would get a higher similarity score than “good car” and “excellent book”, since
the difference between “good” and “excellent”, although minor, would further increase the
distance between both phrases.

Needless to say, the appropriateness of one behavior or the other will depend on the
specific application, and it would mostly depend on the interaction between different length
phrase pairs, if any. In the case of SMT, this would mostly affect segmentation, and not
that much the ranking of the different translation candidates for a given phrase. In this
regard, the first approach is in line with what translation probabilities do, as each phrase
contributes equally to the total similarity score of a translation candidate regardless of
its length, presumably favoring long phrase segmentations, whereas the second approach
is in line with what lexical weightings do, as each word contributes equally to the total
similarity score regardless of the segmentation.

Finally, it should be noted that the different similarity measures proposed can be easily
adapted to invert their behavior with respect to the length of the phrases by taking their
(n+m)th power or root, depending on the case. For the last two measures, this would be
equivalent to taking the geometric mean (as opposed to the product) of the closest word
cosine similarities. However, we did not observe any clear improvement from doing that in
our preliminary experiments.

8.3 Experiments on phrase translation selection

Even if the ultimate goal of our work is to improve machine translation, current SMT
systems are made of complex components interacting in subtle ways (see Section 2.3), so
it might be hard to extract clear conclusions on the behavior of different bilingual word
embeddings and phrase similarity measures from an extrinsic evaluation there (e.g. due
to the stochastic tunning process or the incorporation of possibly redundant information).
For that reason, we leave the evaluation on end-to-end machine translation for the next
subsection and focus on the intrinsic evaluation of the different bilingual word embeddings
and phrase similarity measures in this one.

There are several experimental frameworks that could be used for that purpose, as it
is the case of the new crosslingual semantic textual similarity task introduced at the Inter-
national Workshop on Semantic Evaluation 2016 (SemEval-2016)10. However, we instead

9This only applies to information present in both languages since, as discussed before, all the proposed
similarity measures do penalize missing information in either phrase

10http://alt.qcri.org/semeval2016/task1/
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propose a new task on phrase translation selection, which has the advantage of relying
solely on unsupervised data, allowing much larger test sets for more robust evaluation at
practically no cost and, in our case, being tightly bound to machine translation, while
isolated from its different components.

Our task needs nothing but a phrase table from a standard phrase-based SMT system
and a word aligned parallel test set. In our case, we use the alignment model learned from
the parallel corpora used to train the SMT system to word align the test set. Having done
that, we extract all the aligned phrase pairs in the test set that are found in the phrase
table, in a similar way to how we create examples to train our logistic regression model in
Section 5.1. Finally, we use the similarity measure and bilingual word embeddings under
test to score the different translation candidates in the phrase table, and measure the top
1, top 5 and top 10 accuracies on predicting the translations for the extracted phrase pairs.

For our experiments, we reused the phrase table from the English-Spanish baseline
system in Section 5.4 and take the WMT12 corpus presented there as our test set. Note
that, even if this was our development set there, it was exclusively used for tuning, which
does not affect the creation of the phrase table, so there is no problem on using it as our
test set here. This way, we keep the WMT13 corpus for the test set in the actual end-to-
end machine translation experiments later in Section 8.4, allowing a fair comparison with
respect to the baseline system.

In addition to randomly selecting the target language phrase from all the candidates
and using each of the weights in the phrase table (inverse and forward translation proba-
bilities and lexical weightings), we test several different bilingual word embedding methods
presented in Section 4.3 under these conditions. We first implemented the simple Align-
Init method proposed by Zou et al. (2013), learning monolingual phrase embeddings for
the source language with word2vec and initializing the target language ones according to
the forward lexical weights given by word alignment (see Section 2.2). Even if their full
model runs a bilingual training procedure over the embeddings initialized this way, we skip
this part and directly use the alignment initialized target language embeddings, which the
authors report to give slightly worse yet competitive results in machine translation (an
improvement of 0.30 BLEU points compared to the 0.49 BLEU points of the full model).
In addition to that, we also tested the BilBOWA model by Gouws et al. (2014) and the
BiSkip model by Luong et al. (2015), using the original open source implementations by
the authors at GitHub11. In the case of BiSkip, the authors report that they take the sum
of the input and output (i.e. word and context) vectors instead of the input ones alone as
it is commonly done, so we tested both variants. Finally, we also test the best performing
bilingual mapping model in our translation induction experiments in Section 7.3, which
happens to be the model we propose in Section 7.1 with the orthogonality constraint and
a global preprocessing with length normalization and dimension-wise mean centering.

In all the cases, we trained the word embeddings using the skip-gram model, and we
set the context window to 5, the dimension of the embeddings to 300, the subsampling to
1e-4, the number of negative samples to 30 and the number of iterations to 10 (see Section

11https://github.com/gouwsmeister/bilbowa and https://github.com/lmthang/bivec
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Domain Sentences English tokens Spanish tokens
Europarl parliamentary proceedings 1,929,366 51,593,389 54,021,555

News 2007-2012 (es) news 13,384,314 - 386,015,256
News 2007-2012 (en, balanced) news 13,384,314 388,443,422 -

News 2007-2012 (en, full) news 68,521,621 1,612,954,315 -

Table 17: Corpora for training bilingual word embeddings

4.1). Default values were used for all the other parameters.

So as to allow a fair comparison with respect to the baseline SMT system, we used
the same parallel corpora (Europarl) to train the word embeddings. In addition to that,
we also tested incorporating the News 2007-2012 monolingual corpora. Since the English
portion of it is considerably larger than the Spanish one, we took a balanced subset of it
at random when relevant. Table 17 summarizes their details. Our vocabulary consisted of
all the words in the bilingual corpus plus, in case any monolingual corpora was used, all
the words with at least 5 occurrences in total. In the case of BilBOWA, we were unable
to perform any experiment over the monolingual corpora because of the slow training
process. For Align-Init, other than to train the monolingual source language embeddings
the bilingual corpus was also used to extract the forward lexical weights to initialize the
target language embeddings. Similarly, in the case of our proposed method we used the
symmetrized word alignments from the bilingual corpus to build our dictionary, weighting
the entries according to the number of times each word pair was aligned (see Section 7.1.5).

For each bilingual word embedding method and training corpus combination, we tested
the different phrase similarity measures discussed throughout the chapter: the centroid
cosine similarity, the length normalized centroid cosine similarity, the arithmetic mean
of closest word cosine similarity, the product of closest word normalized cosine similarity
and the product of closest word thresholded cosine similarity. In the last case, after a
preliminary exploration we set the threshold ε to 0.1.

The obtained results are given in Table 18. It is first remarkable that, among all the
similarity measures tested, it is the closest word cosine product we propose which, in its
two variants (normalized and thresholded), achieves the best results by a large margin,
beating the other metrics for all the corpora and bilingual word embedding methods tested
without any single exception. The improvement with respect to the standard centroid
cosine similarity is particularly remarkable in some cases. For instance, in the case of
the BiSkip word vectors trained on Europarl, the closest word thresholded cosine product
achieves a top 1 accuracy of 56.96% in contrast with the 14.83% of the centroid cosine
similarity, an absolute improvement of 42,13%. The improvement is logically more modest
in the general case, but still very significant, in particular considering that the bilingual
word embeddings are the same in all the cases and it is only the phrase similarity measure
computed over them that changes. For example, the best top 1 accuracy for the centroid
cosine similarity across all the configurations tested, obtained by its normalized variant,
is 55.38%, whereas the thresholded version of the closest word cosine product is able to
achieve a top 1 accuracy of 60.41%, an absolute improvement of 5.03%. As for the two
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variants of the said metric, we observe that the thresholded version tends to give better
results for the top 1 accuracy while the normalized version tends to perform better in the
top 5 and top 10 accuracies, but there are exceptions to this trend and the results are
not conclusive in this regard. In any case, we consider that the experiments clearly show
the important contribution of the closest word cosine similarity measure we propose in
either of its variants with respect to the commonly used centroid cosine similarity. The
arithmetic mean of the closest word cosine similarity is somewhat in between: while it
performs considerably better than the centroid cosine, with the only exception of Align-
Init, its results are clearly below those of the closest word cosine product.

As far as the different word embedding methods are concerned, we first observe that
BilBOWA gives the worst results by a large margin. Considering that its training times
are also the highest by far, we conclude that this is undoubtedly the worst performing
method across the ones we test, at least for this task. Apart from that, we observe that
both variants of BiSkip and the method we propose give better results than Align-Init
when it comes to the best performing measure and training corpus in each case. It is
remarkable that the centroid cosine similarity gives comparatively better results in the
case of Align-Init, but still not as good as those of the closest word cosine product. As
for the two variants of the BiSkip model, we observe that using the sum of the word and
context vectors, as the authors reported, gives better results in general. We think that
this is an interesting finding, since this simple technique could in principle be applied to
any word embedding method. In any case, it is the proposed method discussed in Section
7 that achieves the best top 1 accuracy among all the bilingual embedding models tested,
with an absolute gain of 2.31% with respect to BiSkip, the second best performing method,
for their best configuration. However, we observe that BiSkip gets better top 5 and top
10 accuracies. This suggests that, while our method is clearly the best at getting its first
choice right, the relative order for the rest of the candidates given by BiSkip might be
better.

Another interesting variable to analyze is the effect of the training corpus. Contrary
to our expectations, we observe that using an additional monolingual corpus to train the
bilingual embeddings has a negative impact in many cases. This is clearly the case of both
variants of BiSkip, although it should be noted that the method was not originally conceived
to work with monolingual corpora, which might explain the bad results. In the case of
Align-Init, using a monolingual corpus also has a negative effect in the top 1 accuracy,
although it obtains a similar top 5 accuracy and a slightly better top 10 accuracy for the
closest word cosine product. In contrast, the proposed bilingual mapping method clearly
benefits from using an additional monolingual corpus. For instance, in the case of the
closest word thresholded cosine product it gets an absolute improvement of 0.91%, 1.99%
and 0.43% in the top 1, top 5 and top 10 accuracies when using the full monolingual corpus.
We think that this is a very interesting property that the proposed method has, as it allows
to train better bilingual word embeddings by incorporating distributional information from
monolingual corpora. This is particularly interesting for machine translation since, even
if target language monolingual corpora is commonly used for language modeling, current
SMT models cannot benefit from source language monolingual corpora.
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P@1 P@5 P@10
Random selection - - 10.05% 34.36% 58.30%

Phrase-based SMT Europarl

Inverse translation probability 43.27% 78.45% 90.14%
Inverse lexical weighting 14.52% 43.65% 67.22%

Forward translation probability 64.47% 94.71% 98.58%
Forward lexical weighting 57.45% 91.99% 98.08%

Align-Init
forward lexical weight init

(Zou et al., 2013)

Europarl

Centroid cosine 53.86% 81.98% 90.10%
Length normalized centroid cosine 54.59% 83.84% 91.85%

Closest cosine arithmetic mean 53.01% 83.35% 92.01%
Closest cosine product (normalized) 55.77% 88.43% 96.07%

Closest cosine product (ε = 0.1) 55.42% 88.39% 96.07%

Europarl
+

Full news

Centroid cosine 50.05% 81.37% 90.33%
Length normalized centroid cosine 50.02% 82.14% 88.89%

Closest cosine arithmetic mean 48.87% 81.29% 88.77%
Closest cosine product (normalized) 53.13% 88.49% 96.60%

Closest cosine product (ε = 0.1) 51.59% 88.12% 96.60%

BilBOWA

(Gouws et al., 2014)
Europarl

Centroid cosine 4.87% 17.51% 26.25%
Length normalized centroid cosine 4.89% 17.47% 26.13%

Closest cosine arithmetic mean 13.65% 30.64% 49.84%
Closest cosine product (normalized) 30.24% 60.32% 77.75%

Closest cosine product (ε = 0.1) 30.21% 60.22% 77.57%

BiSkip
word vectors

(Luong et al., 2015)

Europarl

Centroid cosine 14.83% 37.96% 59.34%
Length normalized centroid cosine 21.50% 42.39% 60.61%

Closest cosine arithmetic mean 49.63% 75.87% 86.75%
Closest cosine product (normalized) 55.69% 91.38% 98.03%

Closest cosine product (ε = 0.1) 56.96% 91.06% 97.69%

Europarl
+

Balanced news

Centroid cosine 4.81% 16.51% 31.62%
Length normalized centroid cosine 5.06% 15.53% 29.17%

Closest cosine arithmetic mean 11.09% 29.99% 57.95%
Closest cosine product (normalized) 40.65% 79.27% 94.86%

Closest cosine product (ε = 0.1) 40.53% 78.51% 94.03%

BiSkip
word + context vectors

(Luong et al., 2015)

Europarl

Centroid cosine 31.44% 62.31% 74.50%
Length normalized centroid cosine 34.99% 63.75% 74.64%

Closest cosine arithmetic mean 53.78% 77.89% 89.08%
Closest cosine product (normalized) 57.30% 91.38% 97.98%

Closest cosine product (ε = 0.1) 58.10% 90.26% 96.70%

Europarl
+

Balanced news

Centroid cosine 4.86% 20.77% 33.34%
Length normalized centroid cosine 5.06% 19.53% 34.94%

Closest cosine arithmetic mean 10.11% 28.69% 50.18%
Closest cosine product (normalized) 39.92% 77.83% 94.49%

Closest cosine product (ε = 0.1) 39.52% 76.95% 92.88%

Proposed method
orthogonal transform
unit + dim-center

global normalization

(Section 7)

Europarl

Centroid cosine 50.32% 71.50% 82.09%
Length normalized centroid cosine 51.01% 72.33% 80.84%

Closest cosine arithmetic mean 56.16% 80.23% 87.93%
Closest cosine product (normalized) 59.37% 86.96% 95.89%

Closest cosine product (ε = 0.1) 59.50% 86.76% 95.86%

Europarl
+

Balanced news

Centroid cosine 55.25% 79.52% 87.38%
Length normalized centroid cosine 55.38% 79.57% 87.69%

Closest cosine arithmetic mean 57.15% 82.75% 90.64%
Closest cosine product (normalized) 60.02% 88.55% 96.37%

Closest cosine product (ε = 0.1) 60.23% 89.43% 96.34%

Europarl
+

Full news

Centroid cosine 55.22% 79.19% 87.38%
Length normalized centroid cosine 55.35% 79.48% 87.58%

Closest cosine arithmetic mean 57.33% 82.65% 90.54%
Closest cosine product (normalized) 60.17% 88.79% 96.59%

Closest cosine product (ε = 0.1) 60.41% 88.75% 96.29%

Table 18: Results on English-Spanish phrase translation selection. The best results for
each method (denoted by blocks separated by double lines) are given in bold, and the best
overall results are underlined.
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Finally, it is important to note that, in spite of the promising results, it is the forward
translation probability of the baseline phrase-based SMT system that obtains the best top
1, top 5 and top 10 accuracies. Nevertheless, we consider that these number should not be
directly compared to the ones achieved by the different bilingual word embeddings because
of two reasons. First of all, the forward translation probabilities are estimated from phrase
level alignments, and this information is not available for the different bilingual word
embedding methods. In this regard, it would be more appropriate to compare our results
to the forward lexical weightings, which use the same word level information as we do.
When doing so, we observe that the proposed method performs considerably better than
the forward lexical weightings for the top 1 accuracy, with an absolute improvement of
2.96%. Even if the forward lexical weightings still get better top 5 and top 10 accuracies,
these are closely followed by BiSkip. Apart from that, it should be taken into account
that translation probabilities and lexical weightings are estimated in one direction (either
forward or inverse), whereas the bilingual word embedding methods tested here, with the
exception of Align-Init, do not work in any specific direction. This is a very important
factor for the translation selection task under discussion, since an ideal system would
choose the most probable translation candidate to get the highest possible accuracy, and
not the most similar one. For instance, “loquacious” is as similar as “talkative”, if not
more, to the Spanish word “locuaz”, yet less probable to be its translation, because it
is a very uncommon word in English. This clearly favors the scores that are estimated
in the relevant direction, as it is the case of the forward translation probabilities and
the forward lexical weightings. However, when the full machine translation system is
considered, the language model is able to compensate and even invert this advantage.
In fact, the inverse translation probabilities and lexical weightings, despite their poor
performance in the phrase translation selection task here, get a higher weight than their
forward counterparts in an end-to-end phrase-based SMT system as shown in Table 15
for our experiments in Section 5.4. Considering these two aspects, we believe that our
results are very promising and have the potential of being helpful in end-to-end machine
translation, which we experimentally test next in Section 8.4.

8.4 Experiments on end-to-end machine translation

In this section, we test the different bilingual word embeddings and phrase similarity mea-
sures discussed throughout the chapter in an end-to-end English-Spanish machine transla-
tion task. For that purpose, we use the same experimental framework presented in Section
5.4, with the difference that, instead of dynamically adding the probability estimate of our
logistic regression model into the phrase table, we statically add the phrase similarity score
computed over the bilingual word embeddings in each case. The baseline system as well
as the training, development and test sets are the same as the ones in Section 5.4, and
we also perform 3 independent MERT runs for each configuration and report the average
BLEU score for them.

Given the time necessary to run each experiments, we only tested what we considered
the 3 most interesting configurations in Section 8.3 according to the experiments there.
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BLEU (%)
Development Test

Baseline phrased-based SMT 31.68 28.28
Align-Init Europarl Length normalized centroid cos 31.65 (-0.03) 28.29 (+0.01)

BiSkip (word + context) Europarl Closest cos product (normalized) 31.63 (-0.05) 28.32 (+0.04)
Proposed method Europarl + Full Closest cos product (ε = 0.1) 31.65 (-0.03) 28.28 (+0.00)

Table 19: Results on English-Spanish machine translation with phrase similarity scoring

Considering that Zou et al. (2013) report an improvement of 0.30 BLEU points on Chinese-
English machine translation for their Align-Init method using the centroid cosine similarity,
this was one of the configurations that we decided to test here. More concretely, we chose
the word embeddings trained on Europarl and the normalized variant of the centroid cosine
similarity, which give the best results for these settings in Section 8.3. In addition to that,
we also tested the bilingual mapping method proposed in Section 7 trained on the full
bilingual and monolingual corpora and using the closest word thresholded cosine product,
which achieves the best top 1 accuracy among all the word embedding configurations tested
in Section 8.3, as well as the BiSkip method taking the sum of word and context vectors
trained on Europarl with the closest word normalized cosine product, whose top 1, top 5
and top 10 accuracies are all very close to those of the forward lexical weightings.

The obtained results are shown in Table 19. As it can be seen, in spite of the promising
results in the phrase translation selection experiments in Section 8.3, none of the config-
urations tested is able to get any clear improvement over the baseline system. The case
of Align-Init is particularly remarkable since, as mentioned before, the authors report an
improvement of 0.30 BLEU points on Chinese-English machine translation under very sim-
ilar conditions, while we only get an insignificant gain of 0.01 BLEU points. This suggests
that the language pair could be one of the central reasons for our poor results, as distant
languages like Chinese and English might hypothetically better benefit from distributional
semantic information. Another factor to consider is that Zou et al. (2013) perform a single
run of MERT, so the uncertainty around their BLEU score is higher than ours and their
good results might, at least in part, be simply a product of chance.

In any case, it is remarkable that we are not able to get any significant improvement
for the BiSkip and the proposed models either despite their superior results on the phrase
translation selection experiments in Section 8.3. While we believe that these previous
experiments depict a promising basis, we therefore conclude that there is some element
that fails in the integration in an end-to-end SMT system. We believe that an error
analysis in the phrase translation selection task could help better understand the behavior
of the proposed model and identify the possible problem, which we leave as future work.
In any case, when comparing our approach to other successful methods in the literature as
seen in Section 4.4.1, we observe that the most relevant difference is that they use more
sophisticated compositional models based on neural networks, which we consider a key
point to explore in the future.
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8.5 Conclusions

In this chapter, we have applied bilingual word embeddings for phrase translation simi-
larity scoring. Instead of using complex neural network architectures to jointly learn the
word embeddings and their compositionality and work with phrase embeddings, we have
explored different metrics to directly compute a phrase similarity score over bilingual word
embeddings. In this regard, our theoretical analysis of the centroid cosine similarity, a
simple yet widely used metric for that purpose, shows that what it actually computes has
little to do with how humans would assess phrase similarity based on word similarity, and
we have proposed alternative phrase similarity measures that we believe better capture the
human intuition.

For the purpose of intrinsically evaluating different bilingual embedding methods and
phrase similarity measures, we have proposed a new task on phrase translation selection
that relies solely on a phrase table from a standard phrase-based SMT system and a word
aligned parallel test set, hence providing an inexpensive and robust evaluation framework
that is closely related to machine translation. Our English-Spanish experiments show that
one of the phrase similarity measures we propose, the closest word cosine product, achieves
the best results in the task, beating the standard centroid cosine similarity measure by a
large margin. Moreover, the bilingual mapping method proposed in Chapter 7 achieves
the best top 1 accuracy among the different bilingual embedding models tested, with a
considerable improvement over the lexical weightings used in SMT, which rely on the same
word alignment information. It also proves to be the only method to clearly benefit from
additional monolingual corpora, although it lags behind the BiSkip model by Luong et al.
(2015) in the top 5 and top 10 accuracies.

In any case, in spite of the promising results in the phrase translation selection task,
neither of these models nor the Align-Init method by Zou et al. (2013) yields to any clear
improvement when integrated in an end-to-end English-Spanish SMT system. We believe
that this could be partly attributed to our language pair, as Zou et al. (2013) report
an improvement of 0.30 BLEU points on Chinese-English for their Align-Init method,
while we only get an insignificant gain of 0.01 BLEU points applying the same method
on English-Spanish under very similar conditions. We think that an error analysis in the
phrase translation selection task, which we leave as future work, would be helpful to better
understand the behavior of the proposed model and shed light on this lack of improvement
in end-to-end machine translation.
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9 Conclusions and future work

In this work, we have explored the use of distributional semantic and machine learning
techniques to improve statistical machine translation. We have developed a logistic regres-
sion model for dynamic translation probability scoring and use it to incorporate additional
lexical, source language phrase context and word clustering and word embedding based dis-
tributional semantic information into the translation model. In addition to that, we have
developed a general framework to learn bilingual word embedding mappings and analyze
it in relation to other existing methods both theoretically and experimentally. Finally, we
have applied this and other existing bilingual word embedding models for phrase transla-
tion similarity scoring in SMT, for which we have analyzed the centroid cosine similarity
and proposed alternative phrase similarity measures that address some of its issues.

Our experiments on English-Spanish machine translation show the effectiveness of the
proposed logistic regression model with an improvement of up to 0.25 BLEU points over a
strong baseline when using a basic set of lexical features. While it cannot be said that this
improvement is big in quantitative terms, it is remarkably consistent across the different
settings tested and relies solely on the bilingual corpus used to train the baseline SMT
system itself. Our analysis of the weights assigned by MERT reveals that this improve-
ment comes from almost completely replacing the forward translation probabilities while
partly taking the place of the inverse translation probabilities and the language model,
suggesting that the probability estimates given by our model are better than those used in
standard phrase-based SMT and pointing to the usefulness of context features for lexical
selection. This is in line with our theoretical expectations, as we prove our model to be
a generalization of the standard translation probabilities used in phrase-based SMT that
allows to incorporate additional features to obtain better probability estimates as shown
by our experiments. We think that this provides a promising framework to incorporate ad-
ditional information into the translation model, serving as a much more flexible alternative
to factored models, even capable of dealing with dynamic context-dependent features.

Nonetheless, our results when incorporating distributional semantic information into
the model through word cluster and word embedding features are not that positive. While
we are able to improve the results obtained with the basic lexical features, in particular
in the development set, this improvement is very modest and insufficient to draw any
clear conclusion. In any case, our work in this regard was greatly conditioned by the high
computational cost of running the experiments along with the strong hardware limitations
that we had, and we plan to keep running more experiments for different feature sets
and hyperparameters so as to obtain more conclusive results, in particular for the word
embedding features.

Our work on bilingual word embedding mappings goes beyond machine translation and
we believe makes important contributions in the field of bilingual word embeddings both
from a theoretical and a practical perspective. The framework we propose starts with a
basic optimization objective that is equivalent to the previous model by Mikolov et al.
(2013b), and allows for several variants that we prove to be equivalent to other meaningful
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and relevant optimization objectives that are closely related to the previous methods by
Xing et al. (2015) and Faruqui and Dyer (2014). This way, our framework provides a
more global view of bilingual word embedding mappings, showing the underlying connec-
tion between the existing methods, revealing some flaws in their theoretical justification
and providing an alternative theoretical interpretation for them. Our experiments on an
existing English-Italian word translation induction and an English word analogy task give
strong empirical evidence in favor of our theoretical reasoning, while showing that a vari-
ant of the proposed model clearly outperforms all the previous methods tested. More
concretely, our model achieves the best bilingual performance in the word induction task,
while preventing a degradation in monolingual quality and consequently performing at
par with Xing et al. (2015) and considerably better than the rest of the methods in the
monolingual word analogy task.

Finally, our work on the use of bilingual word embeddings for phrase translation simi-
larity scoring explores a natural way to integrate this bilingual mapping method we propose
as well as other existing bilingual word embedding models in a phrase-based SMT system.
This requires generalizing the standard word level cosine similarity to a phrase level simi-
larity measure, a compositional semantic problem that is also relevant for other tasks like
document classification and information retrieval. In this regard, our theoretical analysis
of the centroid cosine similarity, a simple yet widely used metric for that purpose, shows
that what it actually computes has little to do with how humans would assess phrase simi-
larity based on word similarity, and we propose alternative phrase similarity measures that
we believe better capture the human intuition. For the purpose of intrinsically evaluating
different bilingual embedding methods and phrase similarity measures, we propose a new
task on phrase translation selection that relies solely on a phrase table from a standard
phrase-based SMT system and a word aligned parallel test set, hence providing an inexpen-
sive and robust evaluation framework that is closely related to machine translation. Our
English-Spanish experiments show that one of the phrase similarity measures we propose,
the closest word cosine product, achieves the best results in the task, beating the standard
centroid cosine similarity measure by a large margin. Moreover, the bilingual mapping
method we propose achieves the best top 1 accuracy among the different bilingual embed-
ding models tested, with a considerable improvement over the lexical weightings used in
SMT, which rely on the same word alignment information. It also proves to be the only
method to clearly benefit from additional monolingual corpora, although it lags behind
the BiSkip model by Luong et al. (2015) in the top 5 and top 10 accuracies. In any case,
in spite of the promising results in the phrase translation selection task, neither of them
nor the Align-Init method by Zou et al. (2013) yields to any clear improvement when inte-
grated in an end-to-end English-Spanish SMT system. We believe that this could be partly
attributed to our language pair, as Zou et al. (2013) report an improvement of 0.30 BLEU
points on Chinese-English for their Align-Init method, while we only get an insignificant
gain of 0.01 BLEU points applying the same method on English-Spanish under very similar
conditions.

In the future, we would like to continue with this work while exploring new approaches
to apply distributional semantic and machine learning techniques to improve machine
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translation. In particular, we plan to keep experimenting with different feature sets and
hyperparameters for our logistic regression model for phrase translation probability scoring,
in particular in relation to word embedding features. At the same time, we would like to
explore the use of multiple logistic regression models for different configurations in the form
of independent feature functions whose weights would be adjusted by MERT. Apart from
that, we would like to perform an error analysis in the phrase translation selection task so as
to better understand the behavior of our phrase translation similarity scoring model based
on word embeddings and identify the possible reason for its poor performance in end-to-
end English-Spanish machine translation. At the same time, we plan to explore the use of
more sophisticated compositional models based on recurrent or recursive neural networks
for building phrase embeddings from word embeddings and directly compute the phrase
similarity score over them. Finally, we would like to go beyond the bilingual paradigm
that is dominant in the field and focus on the use of multilingual word embeddings to
exploit additional bilingual resources, which we believed can be particularly useful for less
resourced languages.
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