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Abstract

The Navarro-Lapurdian dialect is a Basque dialect spoken in the French side of the Basque
country. This dialect differs from the standard Basque in terms of its phonology, as well
as at the grammatical and lexical levels. Additionally, passages in this dialect are code-
switched texts with French. TTS systems for this dialect need to handle both Navarro-
Lapurdian and French phonemes repertoire. Inaccurate processing of the French words can
result in using the Basque phonology to transcribe them or even in a wrong verbalisation.
Previous TTS system has shown that failing to identify and correctly preprocess the French
words cause a drop in the quality of the system.
In this work, we propose a multilingual approach for the linguistic module of the system to
improve the phonetic transcription of French words. We included a language identification
(LID) task at the first stage of the process and a multilingual Grapheme-to-Phoneme (G2P)
model at the last stage. A Max-Entropy classifier and a Conditional Random Field (CRF)
classifier are used to identify the language at the word-level. Besides, the Transformer
architecture, a deep neural network, is used to train the multilingual G2P model. CRF
outperforms the Max-Entropy classifier achieving a 0.828 F1-measure for the French words
in the LID task, showing an improvement of 0.126 over the Max-Entropy classifier. The
best G2P model trained on monolingual and code-switched sentences and tested on the
code-switched corpus achieves a PER of 6.96% and a WER of 14.13%.
Keywords: Code-switching, Multilingual G2P, Language Identification, TTS systems,
Deep Neural Networks, CRF classifier
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Acronyms and Abbreviations

Acronym/
Abbreviation

Description

AhoTTS TTS system developed in AhoLAB
API Application Programming Interface
BAC Basque Autonomous Community
BPTT Back-Propagation Through Time
CNN Convolutional Neural Networks
CRF Conditional Random Fields
CS Code-Switching
EM Expectation Maximisation
G2P Grapheme-to-Phoneme
HHM Hidden Markov Model
HSMM Hidden Semi-Markov Model
HTS Hidden Markov Model/Deep Neural Network-based

Speech Synthesis System
IPA The International Phonetic Alphabet
IXA pipes Natural language processing tools developed by the re-

search group IXA
L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno

(an optimisation algorithm)
LID Language Identification
LM Language Model
LMBR Lattice Minimum Bayes-Risk
LSTM Long Short-Term Memory
Max-Entropy Maximum Entropy
ML Machine Learning
MT Machine Translation
NE Name Entity
NER Named-Entity Recognition
NL Navarro-Lapurdian dialect
NLP Natural Language Processing
NLTK Natural Language ToolKit
NMT Neural Machine Translation
NN Neural Networks
OOV Out-of-Vocabulary
PER Phoneme Error Rate
POS Part-of-Speech
RNNLM Recurrent Neural Network Language Model
SAMPA The Speech Assesment Methods Phonetic Alphabet

Language Analysis and Processing



2/62

Acronym/
Abbreviation

Description

Seq2Seq Sequence-to-Sequence
SGD Stochastic Gradient Descent
SIWIS Spoken Interaction with Interpretation in Switzerland
SMS Short Message Service
SMT Statistical Machine Translation
TTS Text-To-Speech
UTF-8 Unicode Standard
WA Word Accuracy
WER Word Error Rate
WFST Weigthed Finite-State Transducers

Table 1: Table of acronyms and abbreviations
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1 Introduction

Text-To-Speech (TTS) is the field of study that converts text input into speech. Nowadays,
TTS systems are widely used in different everyday applications, such as news readers or au-
tomatic call centres. Through the years, the researchers have developed different techniques
to implement these systems going from concatenation synthesis to deep neural networks
approaches. Nevertheless, independently from the chosen technique, these systems require
a big amount of data to be trained to achieve high-quality in terms of naturalness, intelli-
gibility and comprehensibility. Few data or phonetically unbalanced corpora can lead to a
poor model of the different phonemes and therefore to poor quality.

Although it is desirable to have a large corpus to train a TTS system, this is not always
possible. Notably, this is the case for the Navarro-Lapurdian Basque dialect, an under-
resourced dialect spoken in the French side of the Basque country. The first TTS system
for this dialect is described in (Navas et al., 2014). In that work, they used the architecture
of the TTS system for standard Basque (namely, Batua) described in (Hernaez et al., 2001)
and adapted it to the dialect. The adaptation included adjusting the phoneset and the
recordings of 4,000 Navarro-Lapurdian utterances, which correspond to our knowledge, to
the only available spoken corpus for this dialect. Despite the fact that native speakers
of the dialect preferred the TTS for the dialect over the one for the standard Basque,
the system fails to correctly pronounce the occurrence of French words which impacts the
quality of the system.

Besides being different from the standard Basque language in the Navarro-Lapurdian
dialect, the texts in this dialect usually code-switch with French. Code-switching presup-
poses an additional challenge for the TTS system: in addition to adapting the phonemes
of the dialect, it must include the phonemes of the French language which were scarce in
the built corpus. In (Pierard et al., 2016), the authors explored what they called ‘surgery’
to overcome the scarcity of the data. They approached the enhancement of the system by
identifying the phonemes that had a lousy realisation in synthetic speech. Since the system
is a Hidden Semi-Markov Model (HSMM)-based system (based on AhoTTS), they proposed
to conduct surgery upon the problematic HSMM states, by transplanting phonemes from
a model trained with French phonemes. The results, although better, are not statistically
significant in some phonemes.

Usually, TTS systems are made of two modules, the linguistic module and the synthe-
siser; this is the structure of the previous systems. In the linguistic module, the text is
preprocessed so the phonetic transcription can be obtained and passed to the synthesiser
to create the synthetic speech. The overall quality of a TTS system relies not only on
high-quality recordings but on the accuracy of the linguistic module.

This work aims to improve the processing of French words in the linguistic module.
Currently, the phonetic transcription of French words are obtained by means of a dictio-
nary; this means that when new French words are found, the system will preprocess them
as Basque words. On the other hand, since Basque is an ergative-absolutive and agglu-
tinative language, there are cases in which some French words or proper French names
will have the declination in Basque, in such cases we need to identify both morphemes so
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they can be transcribed using the phonology of each language. We propose a multilingual
approach to handle code-switched texts that automatically transcribes the French words.

1.1 The Navarro-Lapurdian dialect

According to some linguists, the Basque language is a pre-Indo-European language, which
is considered an isolated language (Lakarra et al., 1995). Moreover, the Basque language
corresponds to a minority language spoken in multilingual communities (Lasagabaster,
2007). This language has historically been spoken in the area of the Basque Country, a
region that has its northern part in France and its southern part in Spain. Today we
talk about three administrative regions, the Basque Autonomous Community (BAC) that
comprises: Bizkaia, Gipuzkoa and Araba; the Chartered Community of Navarre, both
BAC and Navarre located in Spain and the Atlantic Pyrenees Department (also known
as Iparralde in Basque) located in France (Lasagabaster, 2007). As stated in (Basque
Government, 2011), in 2011 there was about 714, 0001 Basque’s speakers and about 388, 000
passive bilinguals (people who may understand but who do not speak Basque), where most
of the speakers are in the BAC region. The vast majority of the population speak either
Spanish or French. About 58.4% of the population do not speak Basque and the percentage
increases for the Navarre and Iparralde regions.

From a syntactic perspective, Basque is an ergative-absolutive language, that means
that in Basque there is a distinction between the object and agent in intransitive and
transitive verbs, in contrast with nominative-accusative languages like English that only
has the distinction with the object of the transitive verbs. For example2:

Example 1.1
[English] He has gone home
[Basque] Hura etxera joan da

Example 1.2
[English] He has killed him
[Basque] Hark hura hil du

In 1.1 we have the case of an intransitive verb (to go in English, and joan in Basque),
the absolutive case for the third person is hura(the agent of the verb). Whereas in 1.2 we
have the case of a transitive verb (to kill in English, and hil in Basque), where the ergative
case for the third person is hark(the agent of the verb) and the absolutive case for the
third person is hura (the object of the verb). On the other hand, the Basque language is
an agglutinative language, that is, the main morphological mechanism is the agglutination;
words are built by several morphemes, where each morpheme usually is a unit of meaning.
For instance, in 1.1 the word etxera corresponds to etxe-ra, the stem is etxe which means

1Population aged 16 and over
2Examples extracted from the Linguistics for Natural Language Processing course notes, University of

the Basque Country, 2018
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‘house’ and the bound morpheme is ra meaning ‘to the’, which corresponds to the allative
case to indicate the direction of the motion.

For various social, political and linguistic reasons, there exist different Basque dialects.
The first person who compiled and wrote about the dialects was Louis Lucien Bonaparte.
He distinguished eight different dialects following the regions where Basque was spoken
around 1860 (Lakarra et al., 1995). The number is reduced now to five dialects, namely,
Biscayan or Western, Gipuzkoan or Central, Upper Navarrese, Navarro-Lapurdian and
Souletin (Zuberoan).

As a consequence of the administrative division of the Basque country, the evolution of
the Basque language has been partially different in the different regions. During the 16th
and 17th centuries, there were no norms that ruled the writing style of Basque texts; it
was the Labourdin coastal dialect the reference for the writers “due to its highly refined
style” (Zuazo, 1995). Nevertheless, after the French revolution, the Basque language lost
its social status and French was declared the only official language, that affected the use
of Basque in Iparralde. It was not until the end of the 18th century that the Navarro-
Lapurdian emerged as a literary dialect (Zuazo, 1995). In contrast, in the Spanish part of
the Basque country, the language did not have the literary status either an official status,
and it was even forbidden under General Franco’s dictatorship. It was after the civil war
that the language started to gain official status. There were several efforts to unify the
language in a dialect that allows the communication between the different speakers of the
different dialects. In 1968, Euskaltzaindia, the Academy of the Basque language presented
the Euskara Batua, the unified Basque (Zuazo, 1995).

Nowadays, the Euskara Batua is the dialect used on the media, newspapers and academia
as part of the linguistic policy to motivate the use of Basque. Contrarily, the Navarro-
Lapurdian is spoken by about 73,000 speakers on the French side of the Basque coun-
try(Basque Government, 2011). Although the Navarro-Lapurdian dialect was a literary
reference, in 2011 only 30.5% of the population in the Northern Basque country spoke
Basque. The standardisation effort has been focused on the Euskara Batua and has not
had the same results for the other dialects. Thus, texts written in Navarro-Lapurdian fol-
low different norms, and there is not a strict norm that governs the writing, for instance,
aspects of the use of a hyphen to separate the morphemes, in dates either 1989-ko or
1989ko are accepted. In table 2, we list some of the differences between the Euskara Batua
and the Navarro-Lapurdian dialect3.

1.2 Text-To-Speech Systems: Linguistic module

TTS systems are used in a wide range of applications, from online newspapers reading to
synthetic voices for laryngectomees (a patient who has undergone a laryngectomy, surgical
removal of all or part of the larynx). A TTS system should process a text input and
based on that, predict the voice signal. The text processing comprises several steps done

3Examples extracted from https://www.hiru.eus/es/lengua-vasca/

caracteristicas-del-navarro-labortano (accessed: April, 2019)
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Aspect Description Navarro-Lapurdian Standard Basque

Phonetics
Graphemes r and
rr

voiced uvular trill/fricative voice alveolar trill

Grapheme h unvoiced glottal fricative It is not pronounced. It lost the
aspiration

Phonology

Diphthong. Case
ei

hogoi

twenty
hogei

Vowel alternation.
Case e

zonbait

some
zenbait

Drop of vowels and
devoicing

berant

to delay
berandu

Sibilants at the be-
ginning of words

s, z, x are more frequent than
the fricative tx

Morphology
Emphatic Pro-
nouns (Rebuschi,
1995)

nerini/nihaur, 1. sg

guhaur, 1. pl

hihaur, 2. sg

zuhaur, 2 sg polite

zuhiauk, 2. pl

(hura) bera, 3. sg

(hek) berek, 3. pl

neu, 1. sg

geu, 1. pl

heu, 2. sg

zeu, 2 sg polite

zeuek, 2. pl

(hura) bera, 3. sg

(haiek) beraiek, 3. pl

Suffix to answer
interrogative forms
zertako (For what)
and zergatik (why)

-kotz

Elgarrekin bizitzekotz

together-With live-For

To live together

-ko

Elkarrekin bizitzeko

Syntax
Quantifier order They can be placed either at

the left or right side of the noun.

asko euskaldun

many Basques

They go after the noun

euskaldun asko

Word order More flexible than in standard
Basque

Table 2: Some differences between the Navarro-Lapurdian dialect and the Standard Basque
(Euskara Batua). Abbreviations: pl.: Plural, sg.: Singular
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in what is called the linguistic module (or front-end) of a TTS system. That module aims
to preprocess the text so it can be transformed into its linguistic representation, which will
be used later for the synthesiser module (or back-end) to generate the synthetic speech.
Figure 1 shows a general scheme of a TTS system.

Figure 1: General scheme of a TTS system

Briefly speaking the linguistic module needs to predict all the linguistic features to
reconstruct the speech signal from them. The process is not a trivial conversion; to begin
with, in TTS synthesis, we are going from a discrete space (characters, words) to a contin-
uous one (speech signal). There are aspects of the speech that are not strictly encoded in
the text, like the intonation pattern. Also, we can find cases where the text being analysed
can have different possible options for pronunciation. That being said, there is an extensive
work done in the linguistic module so the system can produce a clean (unambiguous) and
the most comprehensive representation of the linguistic features. Although the back-end
of a TTS involves several and complex processes to predict a continuous speech signal from
the linguistic features, in this work, we focus our attention on the steps carried out in the
linguistic module. For further information about the techniques used in synthesis we rec-
ommend to consult (Rabiner and Schafer, 2007; Taylor, 2009), and (Adiga and Prasanna,
2018) for a compilation of the last techniques to model the acoustic features for statistical
parametric speech synthesis.

In (Taylor, 2009), the author makes a clear separation between the form and the writing;
the form is clean, abstract and unambiguous, whereas the writing is considered a noisy
signal. We draw our attention to this distinction as a helper to distinguish the steps to
decode the writing. To illustrate the relation between the writing and the form consider
the sentence: “In NYC there is a present every 15 days.”. To process this sentence our
system should identify that NYC is an abbreviation that means “New York City”, that 15

is the numeric representation of “fifteen” and that the word present is the noun and not
the verb which results in a different pronunciation.

The linguistic module is a series of tasks on the basis thereof. For some of those tasks,
the order in which they are arranged has an impact on the result. Whereas, others can be
performed in parallel. We summarise the main tasks explained in (Taylor, 2009).

1. Pre-processing: Even though UTF-8 is widely used as the computer encoding
standard, other standards are also used. Hence, our system needs to preprocess

Language Analysis and Processing
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the text, so all the tokens are encoded in the same encoding. On the other hand,
the system should identify the tokens of different languages so that the appropriate
modules can process them in further tasks. After that, we need to tokenise by
sentences and words. Our system should be able to distinguish between the number
separators (,.) and the punctuation symbols.

2. Semiotic system identification: As we show with the previous example, a text
can encode not only natural language but other semiotic systems. A crucial task
is to accurately identify the semiotic system of each token in the text so further
processing can be accurately done. For instance, we need to identify whether a
number is a cardinal, ordinal number, or a date, probably context and patterns help
to resolve the ambiguities. Additionally, the system should be able to differentiate
between acronyms, abbreviations, and uppercase titles. A text normalisation task
can handle the uppercase texts while acronyms and abbreviations will need further
processing.

3. Decoding and Parsing: Once a semiotic class has been assigned to a token, the
system needs to find the underlying form of it by using the appropriate parser for
the semiotic class. It can be the case that for some classes, like abbreviations
and acronyms, we need to look up in the lexicon. There is no single rule to de-
code acronyms. Some are pronounced as the literal word they form, for example
“NATO” (North Atlantic Treaty Organization) pronounce as /neIt@U/4; and others
pronounce letter by letter as in “IBM” (International Business Machines) pronounce
as /VIbi:”Em/. Hence the system should have a lexicon as complete as possible, for
acronyms not found in the lexicon a good strategy is to use the letter by letter rule.

4. Verbalisation: We must not confuse decoding and parsing with verbalisation.
Whereas in the decoding and parsing phase, we identify only one underlying form
for the token, in verbalisation, we can have different options to translate non-natural
language text. The election can be based on the application of the system or the
language preferences of the users (the case for dialects). Once a decision has been
taken, the verbalisation task can be merely a mapping function depending on the
semiotic class. For example, the verbalisation for the cardinal number 15 is “fifteen”.

5. Disambiguation: One characteristic of natural language is ambiguity. There are
ambiguities at all levels of interpretation of a sentence. We encounter syntactic
ambiguity, the classic example of “I saw a man with the telescope” which has two
possible interpretations where the prepositional phrase (PP) “with the telescope”
can be linked to the noun phrase (NP) “a man” or the verbal phrase (VP) “saw”.
Semantic ambiguity, which is related to the meaning of the sentence. Lexical am-
biguity in which case a word can have different part of speech labels. In the case
of TTS systems, we are interested in homographs, words that are written the same

4Using SAMPA: Speech Assessment Methods Phonetic Alphabet phonetic transcription.
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but which pronunciation varies according to its meaning, the example of the word
“present” that is pronounced /prEz@nt/ if it is the noun or /prI”zEnt/ if it is the
verb.

6. Phonetic transcription: One step previous to the speech signal prediction is the
phonetic transcription. In this task, the system transforms the unambiguous words
decoded from the text to their phonetic representation. There are two big projects
of phonetic alphabets, namely The International Phonetic Alphabet (IPA)5 and The
Speech Assessment Methods Phonetic Alphabet (SAMPA)6. These alphabets encode
all the possible sounds (phonemes) that humans can make into symbols. Nonethe-
less, the phonetic transcription is not merely a mapping from characters to phonetic
symbols. Words are not pronounced the same when they are pronounced isolated or
in sentences. Articulatory processes are going on when we pronounce, that changes
the canonical pronunciation of a word. In texts, there is often a separation between
words (i.e. a blank space), but this is not the case in the speech signal. Hence, the
system needs to predict the articulatory processes correctly; otherwise, the output
signal can sound unnatural. The phonetic transcription can be performed employing
the lexicon in combination with an automatic approach.

7. Prosody prediction: The phonetic transcription by itself is not sufficient to predict
the speech signal. A human will barely speak with a flat rhythm; instead, we usually
use different intonation patterns, among other reasons, because the prosody encodes
information about the speakers’ attitude and emotion. It is worth to mention that
ordinarily, the text that needs to be synthesised is written to be communicated by
writing and not by speech. That is, any information concerning the verbal content
and style is not fully encoded in the texts, or it is absent. However, some features
can be predicted, like the phrasing, in many languages, questions will have a rising
pitch pattern. For example, English or Spanish. In this task, the system predicts
phrasing (prosodic phrase breaks), prominence and intonational tune.

1.3 Code-switching

Code-switching (CS) is the alternation between two or more languages or dialects of the
same language within the same conversation. CS is a phenomenon that frequently occurs
in multilingual societies, such as in India. Nowadays, we can claim that with the connec-
tivity and the globalisation, this phenomenon is also happening in monolingual societies.
There are several issues of linguistic interest in such environments, for example, language
representation on bilinguals’ mind and why the speaker switches. One may not confuse
borrowing with code-switching, as in borrowing the phonetic realisation of the loanword is
adapted following the phonology of the recipient language.

5https://www.internationalphoneticassociation.org/ (accessed: April, 2019)
6https://www.phon.ucl.ac.uk/home/sampa/index.html(accessed: April, 2019)
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There are two main distinctions concerning the switch: intra-sentential, code-switching
within a sentence and inter-sentential, code-switching between sentences. However, code-
switching at the morpheme-level has also been found in agglutinative languages, for exam-
ple in the pair Turkish-English (Boztepe, 2003):

Example 1.3
Sen-inle bu konu-da CONFLICT-imiz var.
you-PREP this issue-PREP conflict-POSS PRONOUN (1 ST PLURAL) exist.
[English] We (You and I) have a conflict (disagreement) over this issue.

In code-switching, the main code in a code-switched utterance to which a majority of
phonological and morphological features of the discourse can be attributed is called base or
recipient code (linguistic variety). Myers-Scotton’s model (Boztepe, 2003) proposes that
there is always an asymmetrical relation between the languages. Thus they introduced the
matrix language (ML) and the embedded language (EL) terms. The matrix language is the
language dominating the sentence in terms of the syntactic and morphological relations. In
the Navarro-Lapurdian dialect, the matrix language is Basque, and the embedded language
is French, see example 1.4 and 1.5, in bold the French words. The first example shows
code-switching at the morpheme-level. Also, the second example illustrates inter-sentential
code-switching. Examples extracted from the journal Herria.

Example 1.4
- Baiona mailaz jautsiko da, joanden ostiralean berdinketa ardietsirik ere Orléans-eko
zelaian, 11.
- Bayonne level-FROM relegate FUT, last Friday tie reach-even though Orleans-OF pitch-
AT, 11
[English] - Bayonne will be relegated, even though they tied last Friday at the Orléans
pitch, 11.

Example 1.5
La deuxième vérité: Frantzia iparraldeko hiri ttipi batean hatzemaiten dute neska bat
hila
The second truth: France northern city small one-IN find PAST-PART girl one dead
[English] The second truth: A dead girl has been found in a small town in northern France.

1.4 Master’s thesis statement

Although the TTS system developed in (Pierard et al., 2016) improved the quality for
the dialect, the inappropriate pronunciation of the French words makes the system fails
in terms of naturalness and intelligibility. We identify two tasks that can be adapted to
a multilingual approach in the linguistic module to process the French words better. We
propose to add a language identification task in the preprocessing phase that will serve
as a filter to redirect the words to the correct pipeline process. Currently, the phonetic
transcription is done by using a rule-based approach for Basque words and by dictionary
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entries in the case of French words. We propose to use a multilingual Grapheme-to-
Phoneme (G2P) model that can transcribe both languages once the language of the word
has been identified.

The main application for which the TTS system was built is as the assistant reader of
online newspapers. Under this application context, a reasonable assumption is that the
texts are well-written in Basque, following the grammar and declination rules of the dialect.
Although the assumption is valid to some extent, particularly, there is no such thing as a
standard for the code-switching with French. Usually, the texts code-switch with proper
names, but it is not limited to that.

One interesting phenomenon to analyse is the code-switching at the morpheme level; the
base language is Basque that means that the declination cases are applied over the French
words when needed, and free morphemes can be attached to French words following the
agglutinative morphology. How does the morphophonology of both languages interact at
the morpheme boundaries? In this work, we do not intend to fully answer this question as
it requires a large amount of data to have statistical support to draw any conclusion, but
we want to draw our attention to these cases as they are of linguistic interest.

1.5 Master’s thesis outline

This document is organised as follows: in section 2 we discuss the techniques that have
been used to address the problems of language identification and Grapheme-to-Phoneme,
particularly for the case of code-switched texts. In section 3, we explain our proposal, the
technologies used, the corpora employed to train the different models and the metrics to
measure the performance. Section 4 contains the results of the different experiments and
the analysis of those. Finally, section 5 gives an overview of the work done and suggests
further steps for continuing the study.
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2 Literature Review

In this section, we explore some techniques that have been used to perform the language
identification task and the grapheme-to-phoneme conversion. It should be noted that there
are several methods for monolingual contexts, that is when the input text is written in only
one language. However, over the last years, the multilingual information on the internet
has increased, and access to data is becoming more convenient. Researchers have turned
their attention to multilingual perspectives as well. We review here both approaches and
how they have been used for the case of code-switching.

2.1 Language Identification Problem

When it comes to working with CS, one of the most common tasks in Natural Language
Processing (NLP) is the Language Identification (LID) task (Rosner and Farrugia, 2007;
Vyas et al., 2014; Sitaram and Black, 2016; Rallabandi and Black, 2017). Despite the fact
of better processing the words once we know their language, one can also take advantage
of the monolingual resources of the specific language. It is often the case that there are
more available monolingual resources than code-switched ones. In contrast to LID for
monolingual documents, LID for code-switched texts is intended to be at the word-level.
That level of granularity makes this process a challenging process, and it is still an unsolved
problem as evidenced on the last two shared tasks on LID in code-switched data (Solorio
et al., 2014; Molina et al., 2016).

Several strategies have tackled this problem, but one recurrent approach is the use of
character n-grams either as features for Machine Learning (ML) algorithms or to build
language models. One reason to use them is the relation that exists between the language
and the distribution of the character n-grams. Zipf’s law can show this relation. Zipf’s
law establishes an inverse proportional relationship between the frequency of a word and
its position in the decreasing rank of words. The corpus gives the relation factor, and
it will be constant throughout the whole corpus; see equation 1, where f is frequency, r
is the position in the rank, and k is the constant for the corpus. In (Ha et al., 2003),
the authors found that Zipf’s law is not only valid at word-level, but it is also valid for
syllable- and character-level. Furthermore, characters n-grams can encode aspects of the
morphology (Kulmizev et al., 2017), which can be a significant distinction between two
distant morphological languages. We will see the importance of these two statements for
our experiments in section 3.1

f =
k

r
(1)

In the following sections, we are going to explain some of the techniques used to carry
out LID for code-switched texts.
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2.1.1 Hidden Markov Model (HMM) approach

In (Rosner and Farrugia, 2007), the authors developed a LID process based on HMM
to identify words in Maltese-English code-switched SMS messages for a TTS system. In
their approach, the authors proposed a 2-node HMM, modelling a bigram language tran-
sition change. The authors calculate the distributions of the HMM model as described in
equations [2, 4], where li ∈ L, L is the set of languages: English and Maltese.

πi =
count(li)

count(tagged samples)
(2)

aij =
count(lilj)

countli
(3)

bi(w) ≈ count(w tagged as li)

count(li tokens)
(4)

The authors included a bias number (α = 4) of entries of the word in the corpus tagged
as li if the word was found in the dictionary of the li language. The bias was used as a fea-
ture for preference. To avoid impacting the probabilities, they also included a small number
(β = 1) of the word tagged as the other language. For the case of unknown words, also
known as Out-of-Vocabulary (OOV) words in the literature, they used a trigram Markov
Language model to find the probability of the word belonging to one of the languages.
They trained the model with 200 real-world Short Message Service (SMS) messages, and
tested it with 100, obtaining an accuracy of 96.5% in their best configuration.

2.1.2 Machine Learning approaches

(King and Abney, 2013) explored weakly supervised methods to perform LID in mixed-
language documents. Among the methods explored, the authors trained a Logistic Re-
gression with Generalised Expectation. They estimated the marginal label distribution
utilising a regular supervised näıve Bayes classifier. This approach was later tested in
English-Hindi code-switched social media data (Vyas et al., 2014), which also included a
code-switching probability to model the context. Their LID task reached an accuracy of
84.6%.

Shared tasks on LID in code-switched data have been a source of state-of-the-art algo-
rithms. In (Solorio et al., 2014), the teams worked on four pairs of languages (Mandarin-
English, Modern Standard Arabic-Arabic dialects, Nepali-English and Spanish-English).
In (Molina et al., 2016), the teams worked with two pairs (Modern Standard Arabic-Arabic
dialects and Spanish-English). Most of the teams in both tasks proposed solutions based
on Conditional Random Fields (CRF) showing the best F1-measure for the majority of
the pairs of languages.

CRF was introduced in (Lafferty et al., 2001) for labelling sequences. In CRF, we have
two random variables X and Y , where X ranges over the data to be tagged, in our case,
that would be words from natural language. Y ranges over the labels; in our case, the
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languages we want to identify. These two random variables are jointly distributed and
modelled as a graph G = (V,E), where V is the set of vertices or nodes, and E are the
edges or links. (X, Y ) is a conditional random field where Y follows the Markov property
with respect to the graph when it is conditioned on X as described in equation 5, where v
and w are nodes in the graph and w ∼ v means that w and v are neighbours in G.

p(Yv|X, Yw, w 6= v) = p(Yv|X, Yw, w ∼ v) (5)

Under the assumption that G has a linear chain graph structure, the joint distribution
over Y given X is denoted by equation 6; where y is the sequence of labels and x the
data sequence, λk and µk are parameters of the model and fk and gk are given and fixed
features.

pθ(y|x) ∝ exp(
∑
e∈E,k

λkfk(e, y|e, x) +
∑
v∈V,k

µkgk(v, y|v, x)) (6)

To determine the parameters θ = (λ1, · · · ;µ1, · · · ) from the training data
D = {(x(i), y(i))}Ni=1 with the empirical distribution p̃(x, y) they use the objective function
shown in equations 7 and 8.

O(θ) =
N∑
i=1

logpθ(y
(i)|x(i)) (7)

∝
∑
x,y

p̃(x, y)logpθ(y|x) (8)

CRF was one of the methods explored in (King and Abney, 2013), which showed the
best results for the LID task. In (Solorio et al., 2014), there was not an overall winner
algorithm for all of the language pairs, but the CRF proposed in (Chittaranjan et al., 2014)
was on top three for several test sets for each pair language. The authors developed a CRF
with 27 features: 3 Capitalisation features, 3 Contextual features, 16 Special character
features, 4 Lexicon features and one character n-gram feature. The character n-gram
feature was obtained using binary Maximum Entropy classifiers trained with monolingual
words. The probabilities obtained are later binned into ten equal buckets, more details
about the features can be found in section 3.1. They achieved an accuracy of 95.3% for
Nepali-English pair.

2.2 Grapheme-to-Phoneme Conversion

In G2P conversion, we want to obtain the phoneme sequence from the written word; we
can see this as going from a character to a phoneme sequence. The idea of using G2P
algorithms arises from the need to get the phonetic transcription of OOV words. To get
the phonetic transcription of a word, the system will look up first in the lexicon, and if
there is no entry for it, the system will classify it as an OOV word. Then the TTS system is
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expected to apply the morphophonology that governs the pronunciation as a human would
do it.

One of the most traditional strategies is rule-based (Taylor, 2009); this approach fol-
lowed the dictionary look-up method. In rule-based systems, the transcription is done by
subsequent application of usually context-sensitive rewrite rules. These rules are of the
form A → B||L R where A is rewritten as B under the left context of L and the right
context of R. The process of creating the rules requires a linguist expert in the language
of study since it is a manual task. The rule-based approach showed good results for consis-
tent languages such as Spanish but it poorly performed for more irregular languages such
as English. Example of systems using rule-based G2P are (Wypych et al., 2003), (Braga
et al., 2006) and (Nair et al., 2013).

Although with knowledgeable approaches, we can cover all the morphophonemic rules,
those approaches are costly in terms of time as the rules are hand-written. The data-driven
strategies, on the other hand, can learn the rules from the data itself, which make them
a suitable choice to cover the irregularities of the languages. The hypothesis is that the
more examples we have, the more accurately the model will be able to infer the rules. This
assumption does not restrict the use of the lexicon as it is complimentary. Under these
strategies, we have Statistical approaches, Weighted Finite-State Transducers (WFST) and
Neural Network (NN) approaches.

2.2.1 Statistical Approaches

One of the most popular G2P conversion models is the Joint-Sequence model presented
in (Bisani and Ney, 2008). In this model, the G2P is formulated with the Bayes’ decision
rule, see equation 9, where g ∈ G∗ and G is the set of all graphemes, and ϕ ∈ Φ∗ and Φ is
the set of all phonemes.

ϕ(g) = argmax
ϕ′∈Φ∗

p(g, ϕ′) (9)

The hypothesis is that there is a relation between input (graphemes) and output
(phonemes) symbols so that they can be generated by the same sequence of joint units
(graphones). That is, units that combine both input and output symbols. A graphone is
a tuple of the form q = (g, ϕ) ∈ Q ⊆ G∗ × Φ∗. A sequence of graphones is a particular
join segmentation or alignment that partitions the grapheme and phoneme sequences into
an equal number of segments; the authors called this alignment as a many-to-many align-
ment. Under this definition, different alignments are allowed, and therefore, ambiguities
can arise. Accordingly, they calculated the joint probabilities by summing all the proba-
bilities of the possible graphones. See equation 10; where q ∈ Q∗ and S(g, ϕ) is the set
of all co-segmentations (alignments) of g and ϕ. They introduced a new symbol to model
phenomena happening at word boundaries.

p(g, ϕ) =
∑

q∈S(g,ϕ)

p(q) (10)
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The phoneme sequence is determined using the Expectation Maximisation (EM) algo-
rithm, in which the co-segmentation of the joint units is a hidden variable. See equation
11, where h correspond to the sequence of preceding graphones, and e(q, h;ϑ) is what they
called evidence for q, that is, the expected number of occurrences of q in the training
set under the current set of parameters ϑ. This method can infer both alignments and
subsequence chunks.

p(q|h;ϑ′) =
e(q, h;ϑ)∑
q′ e(q′, h;ϑ)

(11)

2.2.2 Weighted Finite-State Transducers (WFST)

In (Novak et al., 2012) a WFST-based toolkit for G2P conversion is presented, Phoneti-
saurus. The authors describe the problem of G2P as a set of three main tasks: Sequence
alignment, Model training and Decoding. The sequence alignment is the task of aligning
both grapheme and phoneme sequences in a training dictionary. The model training task is
getting a model for new instances, and the decoding task is finding the most likely phoneme
sequence.

In their proposal, the alignment is done through a lattice representation. They modified
the EM-driven multiple-to-multiple alignment algorithm proposed in (Jiampojamarn et al.,
2007), so it allows one-to-many and many-to-one arcs at the initialisation. It calculates
the forward and backward probabilities of each entry in the dictionary and normalises the
probabilities to avoid zero weights in the lattice. The model training uses a joint N-gram
model where the aligned sequences are converted into label sequences which are used to
train the N-gram model. The resulting N-gram model is transformed into a WFST.

Finally, they used three techniques to perform the decoding task. 1) Best short (lowest
cost path through a composition of the word with the G2P model and a projection of
the output labels. 2) Parallel Recurrent Neural Network Language Model for the N-best
reranking. 3) By appealing to the similarities between the Statistical Machine Translation
(SMT) problem and G2P conversion, they tried Lattice Minimum Bayes-Risk (LMBR)
decoding. LMBR was proven to have good results in SMT lattices. In LMBR the lattice
obtained with the G2P model is scaled by a factor and passed as the input to calculate
the best path in an intermediate lattice. The intermediate lattice built by means of the
N-grams. They use Word Accuracy (WA) to evaluate the performance of the toolkit with
different configurations. The Phonetisaurus reached the best results with the Recurrent
Neural Network Language Model (RNNLM) approach for the English dictionaries CMU-
dict, NETalk15K and OALD.

2.2.3 Neural Networks Approaches

From the similarities with the Machine Translation (MT) problem, researchers found in-
spiration in the satisfactory performance of different NN architectures in that problem.
That is the case of (Yao and Zweig, 2015), who proposed two approaches using Sequence-
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Figure 2: Bi-directional LSTM architecture

to-Sequence (Seq2Seq) models based on conditioned models on source language in Neural
MT (NMT). In contrast with the MT problem, the vocabulary sizes of both source and
target sets are small, which allow having reliable n-gram models. The authors proposed
side-conditioned Language Models (LM) for generation and alignment-based models.

One of the advantages of the side-conditioned LM is that those models do not require
explicit alignment information; the prediction of the phoneme is based on the past phoneme
prediction and the input sequence. The architecture consisted of an encoder-decoder LSTM
where the input was given in reversed order. To train the encoder and decoder networks,
they used Back-Propagation Through Time (BPTT) and beam search to generate the
phoneme sequence during the decoding phase. The result is selected according to the
highest posterior probability.

In the case of alignment-based models, the authors proposed uni- and bi-directional
LSTM architectures. For the uni-directional Long Short-Term Memory (LSTM), the pos-
terior probability of a phoneme will depend on the previously predicted phoneme and the
input grapheme as described in equation 12, where ϕT1 is the phoneme sequence, S is the
alignment, and gT1 is the grapheme sequence. While for bi-directional LSTM the probabil-
ity will be conditioned with the whole grapheme sequence (see equation 13), because of the
forward and backward networks as shown in figure 2 (Figure is taken from (Yao and Zweig,
2015)). The information of the alignment was calculated using the method described in
(Jiampojamarn et al., 2007).

p(ϕT1 |S, gT1 ) =
T∏
t=1

p(ϕt|ϕt−1
t , gt1) (12)

p(ϕT1 |S, gT1 ) =
T∏
t=1

p(ϕt|ϕt−1
t , gT1 ) (13)

They showed that using alignment information improved the performance of the G2P
in terms of Phoneme Error Rate (PER) and Word Error Rate (WER), which will be
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explained in section 3. They achieved the best result using the bi-directional LSTM with
three layers and 300 hidden units. That model outperformed the results obtained with
the Joint-Sequence model in (Bisani and Ney, 2008) for the three English dictionaries
CMUDict, NetTalk15K and Pronlex.

In an attempt to dispense with the alignment, in (Toshniwal and Livescu, 2016), an
attention mechanism is presented as an extension of the encoder-decoder LSTM model.
The motivation is given by the fact that alignment is not per se the desired end, but an
intermediate result used to predict the phoneme sequence. Thus the information about
alignment can be learned through the attention mechanism. In their architecture, the
encoder is a stacked bi-directional LSTM that receives as input the sequence of vectors
x, resulting after multiplying the one-hot vector representation of the characters and a
character embedding matrix. On the other hand, the decoder is a staked uni-directional
LSTM. It uses a context-vector c (computed from the last encoder’s state) and the projec-
tion of the previous prediction with phoneme embeddings for predicting the next phoneme.
The authors presented and compared two attention strategies: global attention and local
attention.

The global attention consists of having a context-vector for each decoder timestep
instead of a unique context-vector. The attention mechanism can be interpreted as a soft
alignment, they calculate the context vectors as in equations [14-16], where αit represents
the importance of the hidden state hi to produce yt, v

T , W1, W2 and ba are parameters
learnt during training, dt is the output of the decoder at time t and Tg is the length of the
sequence, the decoder is now conditioned on the context-vector ct.

uit = vT tanh(W1hi +W2dt + ba) (14)

αt = softmax(ut) (15)

ct =

Tg∑
i=1

αithi (16)

For the local attention, the authors used two types of alignments: monotonic (local-
m) and predictive (local-p). In local attention, the hypothesis is that the context window
needed to predict can be smaller than the whole sequence (as in global attention). The first
task is to find an aligned position pt to then calculate the context-window [pt−D, pt +D];
by experimental search they found D = 3 was their optimum. In local-m, the alignment
is assumed to be simplistic pt = t therefore, the attention weights are calculated as in
global attention. While in local-p, the model learns to predict pt using the length of the
sequence, in this case, the model favours input positions that are close by pt by rescaling
the attention weights with a Gaussian prior centred at pt as in the equation 17, where αit
is calculated as in the global attention, i correspond to the position being analysed and σ2

is the variance of the Gaussian distribution.

α̃it = αitėxp(−
(i− pt)2

2σ2
) (17)
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They trained a 3-layer stacked LSTM with 512 hidden units; they used Stochastic Gra-
dient Descent (SGD) and schedule sampling with linear decay. To predict the phonemes,
they used a greedy decoder. Both global attention and local-m attention obtained better
results than the bi-LSTM before explained. Although local-m attention is a simplistic ap-
proach for MT, it is suitable for G2P conversion. Comparison with uni-directional reversed
LSTM shows that bi-LSTM may not be needed for this task, given the short length of the
input sequences about six on average. Interestingly, they found that the number of hidden
units has a significant impact on the performance of the networks, as using four times more
units (from 50 LSTM units to 256 LSTM units) improved the results by 8.7%.

2.2.4 Multilingual Approaches

The approaches described above are monolingual approaches; that means, it is necessary to
train a model for each language. On the contrary, multilingual approaches propose to have
a single model that can handle two or more languages. These approaches try to leverage the
similarities between writing systems and phonetic inventories of the languages. Inspired
by multilingual NMT, (Peters et al., 2017) presented a multilingual G2P that seeks to
overcome the data-scarcity of low-resource languages. The authors reformulated the G2P
problem as a multisource NMT problem where the input sequences can be in different
writing systems (e.g. Latin or Arabic) and the output sequences are in IPA.

They used the encoder-decoder LSTM model with a global attention mechanism. Two
input models were proposed, one in which a language token was added to the grapheme
sequence (LangID). The language token identifies the language of the word being anal-
ysed, for example, <eng> r e a l. The second model did not include the language token
(NoLangID). The architecture of the network consisted of a 2-layer bi-directional encoder
and a 2-layer decoder that used a beam width of 100 to predict the phonetic transcriptions;
both networks had 150 hidden layers. The model was trained using SGD and a maximum
of 10,000 words for each language. To evaluate the performance they employed PER, WER
and WER 100, which penalised if the target word is not in the first 100 predictions.

For comparison purposes, the dataset used was the same in (Deri and Knight, 2016),
a WFST-based G2P. In the WFST model, the first step is to train the model with high-
resource languages and then by means of language and phoneme distances adapt that
model to related low-resource languages. They split in three the training data, one only
with high-resources, another with languages that were adapted in (Deri and Knight, 2016)
and the last one is a set including all the language, a total of 331. Their best results
overpassed the results obtained with the WFST model and were reached using the LangID
model and training in all languages.

In further experiments, they found that even though they had a lower performance
compared with monolingual WFST, their model learned phonemes embeddings that were
reasonably clustered. Their model was able to predict phonemes that although outside of
the phonetic repertoire, they were similar to the targets. A possible way they suggested
to improve the results is to use a reranking strategy based on the language inventory.
Furthermore, they found evidence that the model was not only able to learn similarities

Language Analysis and Processing



20/62

but negative associations as well. They tested the model with unseen languages using the
language token and obtained better results than when using the NoLangID model.
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3 Methodology

This section compiles the different methods used for the LID and G2P tasks, the metrics
employed to measure the performance of the models and the integration of the best models
with the current TTS system.

3.1 LID Models

To accomplish the LID task, we compared the approaches proposed in the shared task
(Solorio et al., 2014). This shared task looked for proposals for tackling the problem of
identifying the language in code-switched tweets at the word-level. We chose the system
proposed in (Chittaranjan et al., 2014) considering it was one of the top systems and was
tested in more than two pairs of languages showing stable performance across different
languages. In this section, we explain the two systems we developed for the LID task, the
corpora used and the metrics used to evaluate the performance of the different systems.

3.1.1 Corpora

To build the corpora for training the CRF, we followed the methodology employed in
the original paper. Nevertheless, since we are working with a low-resource dialect, there
were not Navarro-Lapurdian corpora available in the datasets for Name Entity (NE), and
frequent words. Rather, we used the available resources for the Standard Basque dialect.
The resources for Basque will be assumed to be the Standard dialect unless otherwise
specified.

To build the NE list, we used the corpora available on DBpedia7 (version 2016-10), cor-
pora based on the 2016 released version of Wikipedia. We used ten main NE from the on-
tology defined by DBpedia: Agent, Award, Device, Holiday, Language,PersonFunction,
Places, MeanOfTransportation, Name, and Work.

The frequent words were obtained from the Leipzig’s Corpora(Goldhahn et al., 2012),
as well as DBpedia corpora, Leipzig’s corpora are based on released versions of Wikipedia.
For French, we used Wikipedia version 2010 (Leipzig’s Corpora, 2010). For Basque, we
used Wikipedia version 2016 (Leipzig’s Corpora, 2016a). After obtaining the frequent
words lists, we cleaned it by removing entries that contain special characters except for
hyphens or apostrophe. Table 3 lists the first 15 words for French and Basque corpora.

To train the Maximum Entropy classifiers, we used the sentences in the Leipzig’s
Corpora for Spanish (Leipzig’s Corpora, 2016c), English (Leipzig’s Corpora, 2016b), and
French. For the Basque corpus, we employed Leipzig’s corpus and the Navarro-Lapurdian
corpus, keeping a proportion of 75% words from the Navarro-Lapurdian corpus and 25%
from the Standard Basque (Leipzig’s corpus). The Navarro-Lapurdian corpus was devel-
oped in (Navas et al., 2014); it is a spoken corpus with two native speakers of the dialect
who read sentences extracted from newspapers.

7https://wiki.dbpedia.org/downloads-2016-10 (accessed: May, 2019)
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French Basque

de eta

la da

et zen

le bat

à zuen

l’ ziren

des izan

les ere

en animalia

est generoko

d’ dira

du du

un ez

une zuten

dans bere

Table 3: Top 15 of the most frequent words in Leipzig’s corpora French and Basque

To train the CRF classifiers, we needed annotated data per token. All the datasets from
Leipzig’s corpora are monolingual corpora, however, bare in mind that some sentences may
contain tokens from other languages (e.i. NE, original spellings, ...). Only the Navarro-
Lapurdian corpus contains code-switched French-Basque sentences, although it was not
annotated. The code-switching in the corpus was mainly to introduce NE in French, such
as names of organisations, peoples or places. That is why identifying NE could help us
to identify French tokens in the corpus. To build the corpus for CRF, we used the IXA
pipes(Agerri et al., 2014), NLP tools, to tokenise the sentences in the corpus and to identify
the NE.

Once we have the list of tokens for all the 3998 sentences, we automatically created a
target annotated file, in which we tagged as Basque (bqe8) all the tokens, except for the
ones that where punctuation symbols or numbers which were tagged as Undefined (und).
After that, we manually checked every utterance looking for French tokens, whenever
found them we updated the target file with the French code for the token (fra). During
this process, there were occasions where the lemmatisation was not accurate, in which
case we updated the source (tokens) and target files. These annotations resulted in 317
code-switched sentences. Besides IXA tokenisation, we wanted to compare with another
tokenisation. Thus, a general tokeniser from the python package Natural Language ToolKit

8Language code according to ISO-639-3 standard
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(NLTK) was also used. The process of the annotations for the code-switched sentences was
repeated for the NLTK tokenisation. The final version of the annotated corpus was then
compiled into a .json file, a more convenient format.

Table 4 illustrates the statistics of the corpora and where each corpus was used.

Corpus Identifier No. sentences No. tokens Usage

DBpedia eu ne - 438∗ NE list. CRF training

DBpedia fr ne - 61, 147∗ NE list. CRF training

Leipzig eu 2016 300, 000 419, 604
CRF training

Max-Entropy classifier training

Leipzig fr 2010 1, 000, 000 571, 999
CRF training

Max-Entropy classifier training

Leipzig en 2016 10, 000 39, 460 Max-Entropy classifier training

Leipzig sp 2016 10, 000 39, 365 Max-Entropy classifier training

Leipzig eu fw - 500∗ Frequent words. CRF training

Leipzig fr fw - 500∗ Frequent words. CRF training

Navarro

Lapurdian
nl 3, 998 13, 274

CRF training

Max-Entropy classifier training

Table 4: Description of the corpora employed to train the CRF and Max-Entropy classifiers.
The numbers correspond to the size of the corpora, but final sentences/tokens used varied
as needed. The number of tokens includes special characters and it is case-sensitive. (*)
The numbers correspond to the final tokens used for training

3.1.2 Experiments: CRF Classifier

Given the nature of the shared task (LID in code-switched tweets), some features were
relevant for that purpose, such as if the token contains the ‘#’ symbol (to identify hashtags).
However, in our case, the TTS system is intended to be used for newspaper articles. Under
that consideration, the texts are expected to be well-written, and we can reduce the number
of features initially suggested by (Chittaranjan et al., 2014). The final set of features is
shown in table 5.

To implement the CRF classifier, we used the python scikit-learn extension library
sklearn-crfsuit9. Unlike the original work, we have experimented with different types of
tokenisation, processes for Name Entity identification and representations for the probabil-
ities obtained with the Maximum Entropy classifier. Also, we tried different configurations
of the corpora size, which will be explained in the following sections.

9https://sklearn-crfsuite.readthedocs.io/en/latest/index.html (accessed: May, 2019)
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Category Feature Type Example

Capitalisation

CAP1: Is first letter capitalised? Boolean True/False

CAP2: Is any character capitalised? Boolean True/False

CAP3: Are all character capitalised? Boolean True/False

Contextual

CON1: Lowercase token String ‘arts’

CON2 i: ±3 tokens String ‘des’

CON3: Token length Integer 4

Character

CHR3: Does it contain ′ symbol? Boolean True/False

CHR11: Does it start with number? Boolean True/False

CHR12: Does it start with punctuation? Boolean True/False

CHR13: Is it a number? Boolean True/False

CHR14: Is it a punctuation symbol? Boolean True/False

CHR15: Does it contain a number? Boolean True/False

Lexical

LEX1: Is it in the dictionary of most

frequent words of Basque?
Boolean True/False

LEX2: Is it in the dictionary of most

frequent words of French?
Boolean True/False

LEX3: Is it a Name Entity? Boolean True/False

N-grams
CNG0 i: Binned probabilities gotten

from Max-Entropy Classifier
Float 0.851

Table 5: List of the CRF features for LID task

To prepare our data for training and testing, we assumed we receive sentences as input
and proceed to tokenise them. We used two strategies to tokenise, one that employed the
generic tokeniser available in the NLTK python package10, TweetTokenizer. The second
one, using the tokeniser developed in (Agerri et al., 2014), ixa-pipe-tok, a tokeniser
explicitly trained in Basque (Batua) sentences. We used the pre-trained tokeniser, Part-of-
Speech (POS) tagger and Named-Entity Recognition (NER) tagger in their released .jar

version (1.1.1).
For the NE feature, we compared two processes. The first one was a simple approach

in which we check if any of the NEs in the given NE list was in the sentence. The second
one used the NER tagger provided by IXA-pipes, ixa-pipe-nerc, again a tool explicitly
trained in Basque. On account of Basque being an ergative-absolutive language, and its
agglutinative morphology, we did a further process after identifying the NE. Only for NEs,
we verified if the NE was in its declined form. To do so, we checked if the lemma given by
ixa-pipe-nerc corresponded with the beginning of the NE. If it was the case, we created

10https://www.nltk.org/index.html (accessed: May, 2019)
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a new token with the suffix of the NE and updated the token of the NE with the lemma.
This split is relevant since there are French NE that were declined and so, only the stem
was French, while the suffix was Basque.

Since one of the features for the CRF implied to train a Maximum Entropy classifier to
get the probabilities of a word belonging to Basque or French, we used it as the baseline
for LID task. In the following section, we discuss the experiments carried out to train
the Max-Entropy classifier. Once we got the best Max-Entropy classifiers, we tried using
10-bucket binned probabilities given by the classifier and a 2-size array containing the
probabilities given by both classes (French and Basque).

Table 6 summarises the different configurations to train the CRF classifiers. We ran-
domly selected the number of sentences of each language as specified by the configuration
of the classifier. The French and Basque (Batua) sentences were tokenised using NLTK
tokeniser, while the Basque (NL) monolingual and code-switched sentences were tokenised
with IXA tokeniser.

3.1.3 Experiments: Maximum Entropy Classifiers

A Max-Entropy classifier is a probabilistic classifier that is based on the principle of maxi-
mum entropy (Jaynes, 1957). The classifier searches the probability distribution that best
represents the data, that is, the distribution that has the largest entropy. During training,
the algorithm estimates the weights (λi) of each feature fi(x, y) using the maximum like-
lihood estimation method. Where x are the observable features, and y is the class. Hence
the probability given x to be classified as y is given by equation 18.

p(y|x) =
exp(

∑
i λifi(x, y))∑

y exp(
∑

i λifi(x, y))
(18)

For training the Max-Entropy classifiers, we used the implementation available in the
NLTK library, MaxentClassifier. The character n-grams ranging from 1 to n were used
as features to train the classifiers. As we early mentioned, Zipf’s law establishes a relation
between the frequency of n-grams and their rank in a corpus. Table 7 illustrates the top 5 bi-
grams (word beginnings and endings) for French and Basque in Leipzig’s corpora, as we can
see, the lists are different. To test the impact of such a relation, we tried two different config-
urations for the n-grams, one with word-boundary tokens and the other without them. An
example of features for the French word ‘tout’ (all) n = 3 are: {t, o, u, to, ou, ut, tou, out}
and {〈w〉, t, o, u, 〈/w〉, 〈w〉t, to, ou, ut, t〈/w〉, 〈w〉to, tou, out, ut〈/w〉} when using the word-
boundary tokens.

Similar to the original work, we trained the Max-Entropy classifiers with different con-
figurations for the languages. We tried including other languages aside from French and
Basque, and compare them with those classifiers that only used French and Basque lan-
guages. We used Spanish tokens when training the French classifier and English tokens for
the Basque classifier. When another language was set to true, we split the sets as 100%
for the primary language, 75% for the second language and 25% for the other language.
When it was set to false, we used 100% of the size of the training set for both languages,
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Word beginnings Word endings

French Basque French Basque

d’- er- -es -en

l’- ba- -nt -ko

co- ko- -er -ak

Ma- be- -on -an

pr- es- -re -ik

Table 7: Top 5 of the most frequent bigrams for word beginnings and endings for both
French and Basque (Batua)

French and Basque. We also varied the number of n-grams and the maximum number of
iterations for training. Table 8 shows the different configurations tested. The combination
of the various parameters resulted in 144 Max-Entropy classifiers 72 for French and 72 for
Basque; the total number is reduced to 108 classifiers because French and Basque classifiers
trained with only French and Basque languages are the same as the selection of the data
set is deterministic. The training set size was 75% of the training size specified in the
configuration, and the test set size was the 25% left. The dataset for the Basque language
was composed of 75% words from the monolingual Navarro-Lapurdian corpus and 25%
words from the Standard Basque corpus.

Parameter Values

Size training set 3, 000 and 6, 000

Another language Yes, No

N-grams 3, 5 and 7

Maximum iterations 10, 20, and 30

start/end tokens Yes, No

Table 8: Parameters for training the Max-Entropy classifiers

3.1.4 Metrics

In order to evaluate the performance of the different classifiers, we used the F1-measure.
The Max-Entropy classifiers were ranked according to the F1-measure obtained for the
French class. We defined one test set for comparing all classifiers, that consists of words
different from the ones used during training. The test had a size of 9, 000 words half French
and half Basque (keeping the relation between Navarro-Lapurdian and Standard Basque
dialects used in training). All the words were extracted from the same corpora used during
training.
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The evaluation of the CRF classifiers was performed on the test set of each configura-
tion. We obtained the confusion matrix for each classifier and the F1-measure weighted
average. Nonetheless, considering we want our classifier to perform correctly for the code-
switched sentences, we ranked the classifiers by their F1-measure of the French class in the
code-switched test set.

3.2 G2P Models

Although an obvious strategy to do the phonetic transcription of the French words would
be to use a monolingual G2P, we wanted to explore a multilingual G2P approach as such
described in (Peters et al., 2017). In their approach, they trained a multilingual G2P
Seq2Seq model in which each word was represented as a sequence of characters conditioned
on the language token (see section 2). Using their strategy could bring the benefit of
modelling two phonology systems with a unique model. That is a characteristic that can
serve for overcoming mistakes that come from the LID task. Thus, we wanted to test the
capability of the model to learn the relation between the orthography and the phonetic
transcription, considering the differences in orthography for French and Basque.

Furthermore, in contrast with (Peters et al., 2017), we wanted to model the articula-
tions, which are only present in phrases or sentences. By training the models with sentences
instead of single words, we wanted the model to predict articulation phenomena such as
liaison in French. In this section, we explain the approach employed for the G2P task, the
corpora used and the metrics used to evaluate the performance of the different models.

3.2.1 Corpora

Likewise, as with the corpora for the LID task, we used two monolingual corpora (French
and Navarro-Lapurdian Basque dialect) and the same code-switched corpus used for LID.
In the case of the French corpus, we used the SIWIS11 French Speech Synthesis Database
(Honnet et al., 2017); and the Navarro-Lapurdian corpus for both the monolingual and
code-switched corpora.

The SIWIS French Speech Synthesis Database is a corpus built specifically for speech
synthesis. The corpus consists of six parts, table 9 describes the details of each part. The
corpus is claimed to have phonetically balanced sentences. Although the corpus provides
the phonetic transcriptions, they are encoded into the HTS12 label format (Roekhaut et al.,
2014). The HTS label format splits the sentence into phonemes and describes different
features for each one such as the position of the phoneme in the syllable, the previous
phoneme, among others. Notwithstanding, to create the corpus to train the G2P, we
needed the phonetic transcriptions per each word, a more transparent and explicit format.

Moreover, to keep the consistency, we needed to follow the same phonological rules
both in the monolingual French as for the French words in the code-switched corpus. Since

11Spoken Interaction with Interpretation in Switzerland
12Hidden Markov Model/Deep Neural Network-based Speech Synthesis System. http://hts.sp.

nitech.ac.jp/ (accessed: May, 2019)
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Part No. Sentences Description

parl 4, 500 Parliament debates

book 3, 500 French novels

siwis 75 SIWIS database

sus 100 Semantically unpredictable sentences

emph 1, 575
Emphatic speech for sentences

taken from the other parts

chap - A full book chapter

Table 9: The SIWIS French Speech Synthesis Database. Description of the corpus

we did not have available the HMM-based speech synthesis system, instead we used the
phonetic transcriptions generated by the open source TTS eSpeak13.

To build the French monolingual corpus, we took the book part of the SIWIS corpus
and obtained their phonetic transcriptions with eSpeak. Although eSpeak uses SAMPA for
the transcriptions, some phonemes did not use the standard. In which case we mapped the
eSpeak phoneme with its SAMPA equivalent, for example, the unvoiced glottal fricative
‘ |’ in eSpeak was replaced by ‘h’. We also cleaned the transcription; that is, we removed
symbols that are used for prosody; only the stress symbol was kept. Once we got the
cleaned version of the sentences, we proceeded to verify the length of the sentences and
their transcriptions. As we needed a one-to-one relation between the sentence and its
phonetic transcription, we removed the sentences in which there was not such a relation,
for example, sentences that had two punctuation symbols and the transcription was only
one pause symbol. After that, we investigated that the sentences did not include phonemes
outside of the French phoneme inventory 14; we ignored the ones that included phonemes
from other languages. Finally, to produce the source data to train the G2P model, we split
each word into the characters and added the language token of each word, the words were
separated using the bar symbol ‘|’; In the case of the punctuation symbols, we used the
undefined language code. Table 10 shows an example of source and target sentences.

In the case of the Navarro-Lapurdian corpus, we obtained the phonetic transcriptions
using modulo1y2 of the AhoTTS system for the Navarro-Lapurdian dialect. We used the
-TxtMode=Spell feature that gives the transcription for each word; the system is rule-based
for the Basque phonology and lexicon-based for the French words. The cleaning process
was similar to the one described before. We separated the monolingual and code-switched
sentences based on the corpus built for the LID task (see section 3.1).

As previously mentioned, we wanted to keep coherence concerning the rules employed
to generate the French transcriptions. Hence, we go through all the sentences in the code-
switched corpus (317 sentences) and check that the French transcription corresponded

13http://espeak.sourceforge.net/. Accessed on: May 2019. Version 1.48.03
14https://www.phon.ucl.ac.uk/home/sampa/french.htm. Accessed on: May 2019

Language Analysis and Processing

http://espeak.sourceforge.net/
https://www.phon.ucl.ac.uk/home/sampa/french.htm


30/62

with the one provided by eSpeak. Table 10 shows examples of transcriptions for both
monolingual and code-switched sentences.

Language Type Example

French
Source fra L a | fra r é c o l t e | fra f u t | fra f a c i l e | und .

Target l a | R e k O l t | f y | f a s i l |

Navarro-

Lapurdian

monolingual

Source bqe E t a | bqe d e u s i k | bqe e z t u e n a k | und ?

Target e t a | D e w s‘ i k | e s t w e n a k |

Navarro-

Lapurdian

code-switched

Source fra L a f a r g u e | bqe d a | bqe h e m e n | und .

Target l a f a R g | D a | h e m e n |

Table 10: Example of source and target sentences for G2P model. In these examples the
transcription did not include the stress marker

We developed two versions of the corpora, one in which the target files (the phonetic
transcriptions) have the stress symbol, and the other without it. Table 11 summarises the
resulted corpora used for training the G2P models.

Corpus No. Sentences

French (SIWIS-book part) 2, 873

Navarro-Lapurdian (monolingual) 3, 592

Navarro-Lapurdian (code-switched) 317

Table 11: Summary of G2P corpora. Each corpus has two versions of phonetic transcrip-
tions, one with the stress marker and the other without it

3.2.2 Experiments

In (Peters et al., 2017) the Seq2Seq model used was the encoder-decoder model with at-
tention mechanism described in (Bahdanau et al., 2014) (please see section 2). They used
OpenNMT (an NMT toolkit (Klein et al., 2018)) to implement their model. As explained in
their work, G2P can be modelled as an NMT problem, and so we proposed to test their in-
put model using other neural networks models applied to NMT. We tested the Transformer
model (Vaswani et al., 2017), an architecture widely used for NMT and whose computa-
tional complexity is better than other architectures also robust like Convolutional Neural
Networks (CNN). Provided the advantage that the Transformer model is also implemented
in the OpenNMT toolkit.
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In contrast with the encoder-decoder model architecture, in the Transformer model
architecture, there are no LSTM units but stacked layers each one with the multi-head
self-attention mechanism, which corresponds to one of the novelties of this model. Figure
3 illustrates the architecture of the Transformer model, as presented in (Vaswani et al.,
2017).

Figure 3: Transformer model architecture

The Transformer model architecture is based on attention mechanisms. In the ar-
chitecture, there are N stacked encoders, and N stacked decoders. Each encoder has a
layer of self-attention mechanism followed by a position-wise feed-forward network; the
decoder is alike, but between the self-attention layer and the feed-forward network there
is an encoder-decoder attention layer, similar to the attention mechanism used in Seq2Seq
models.

The self-attention layer allows the model to take context into account when encoding
or decoding a specific word, in the context of NMT, this is helpful for anaphora resolution.
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The equation 19 describes how the attention is calculated; The matrices Q, K and V
( Queries, Keys and Values respectively) are weight matrices learnt during training; dk
corresponds to the dimension of the queries and keys. This scaled dot-product attention
models the importance of words while encoding another word (self-attention of the word
being encoded).

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (19)

Furthermore, the attention mechanism in the Transformer model uses what they called
Multi-Head Attention. This mechanism enables the model to have several representations
of the relations of the words by using several heads. Each head learns different Q, K
and V matrices modelling different features of the relations. Hence, for each self-attention
layer, there are h parallel attention layers once the layers have been processed; they are
concatenated before being sent to the feed-forward network. Equations 20 and 21 shows
how the multi-head attention is calculated, where WO ∈ Rhdv×dmodel , dv is the dimension
of the values and dmodel is the dimension of the model.

MultiHead(Q,K, V ) = Concat(head1, · · · , headh)WO (20)

headi = Attention(QWQ
i , KW

K
i , V W

V
i ) (21)

In our experiments, we used the TransformerBig model available in OpenNMT. The
details of the model parameters are listed in table 12 used for all the experiments. The FFN
Inner dimension corresponds to the dimension of weight matrix learn in the feed-forward
network. The ReLU dropout corresponds to the dropout for the ReLU activation in the
feed-forward network.

Parameter Value

dmodel 1, 024

No. encoders/

decoders
6

No. heads 16

FFN Inner dimension 4, 096

Dropout 0.3

Attention dropout 0.1

ReLU dropout 0.1

Batch size 4, 096

Table 12: Parameters of Big Transformer

In our experiments, we tested the ability of the models to learn both phonologies and
to adapt them whenever needed based on the surrounding words. We tried three different
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configurations of the dataset: all monolingual sentences; all code-switched sentences; and
both monolingual and code-switched sentences. For each configuration, we test the capa-
bility of the model to learn the stress pattern of each language. To do so, we prepared two
versions of the dataset, one including the stress marker ‘’’ and the other without it. For
the three dataset configurations, we split the dataset into 80% for the training set, 10%
for the validation set and 10% for the test set.

During earlier experimentation, we found that the number of the maximum sequence
length either source or target was a parameter that affects the training model. Because of
that, we decided to restrict our models to be trained using a maximum sequence length
for both source and target of 100 items (characters, and phonemes). There is often the
case that the speaker will make a pause when reading a punctuation symbol. Assuming
coarticulation phenomena do not occur around punctuation symbols. Whenever possible,
we cut the longest sentences around punctuation symbols; avoiding cutting a coarticulation
phenomenon. However, that is not always possible, as there may be sentences in which case
the punctuation symbol is outside of the 100 window, in such cases we cut the sentence
around the last word in the window, avoiding cutting a sentence in the middle of a word.
Table 13 summaries the different dataset configurations.

3.2.3 Metrics

G2P models are often evaluated using Word Error Rate (WER) and Phoneme Error Rate
(PER) (Bisani and Ney (2008); Yao and Zweig (2015); Deri and Knight (2016); Kyaw Thu
et al. (2016); Toshniwal and Livescu (2016); Peters et al. (2017)).

PER is the Levenshtein’s distance between the predicted phoneme sequence and the
target sequence, the actual sequence. In our case, besides the phonemes themselves, we
included the word separator symbol ‘|’ in the calculation.

On the other hand, WER is the rate of the words which phoneme sequence is not
exactly the actual phoneme sequence. We concatenated the phoneme sequence to form the
word and used the Levenshtein’s distance to find the wrong guesses. There may be cases
in which a word separation symbol is added or removed it in the prediction, and so it may
affect the metric if we do a one-to-one check.

3.3 TTS Integration

The current system is a modular system composed of three main modules: Modulo1 which
performs the preprocessing and normalisation tasks; Modulo2 which obtains the linguistic
features; and Modulo3 which gets the acoustic features and performs the synthesis. Figure
4 shows a general schema of the modular architecture, Modulo1 and Modulo2 are often
combined into a big module (Modulo1y2 ) for the final system.

In order to include the LID and G2P tasks, we had to modify the data flow in the
Modulo1y2 module. Figure 5 illustrates the data flow and process of the linguistic mod-
ule. The module reads the input through a stream and at each time step performs the
segmentation, the normalisation and the verbalisation of each word; this means that the
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text is not read all at once but per chunks. Once the normalisation and verbalisation are
finished, the module sends the object representing the utterance (UttWS) to the package
that extracts the linguistic features. The package extracts the POS tags, places the pauses
where needed, obtains the phonetic transcription (using the lexicon or rules if the word is
not in the dictionary), and predicts the prosody from the text. The dictionary is consulted
at both phases. Finally, the module generates the labels required for the synthesiser.

txt Modulo1y2 Modulo3 wav

TTS

Figure 4: Modular structure of the current TTS

Input Stream

Normalisation
apostrophe, com-
pounds, etc.

Verbalisation
date, number, etc.

POS tagging

Pauses

Phonetic
Transcription

Prosody

Linguistic labels
Segmentation

Linguistic features

Lexicon

more data?

y

n

Figure 5: Data flow of the linguistic module

We introduced the LID task in the Segmentation block. The package first performs the
LID task before the normalisation task; thus, it avoids changing the written word with the
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Basque morphophonological rules when it is a French word. However, there are two steps
in the normalisation task that are required even for French words. Specifically, we want
to use the phonetic transcription of the dictionary if the word is in the lexicon. Also, we
want to do compound normalisation. This step is useful to keep the language information
about the morphemes that compose the word. For example Andrée-rekin, we want to keep
the information that Andrée is French and that rekin is Basque, so later we avoid further
normalisation steps for Andrée but not for rekin.

On the other hand, the G2P task is placed in the Linguistic Features block. We added
a new tag (POS FR TF MRK) to state if a word is a French OOV word and to indicate that
later we need to obtain the phonetic transcription with the G2P. The tag is assigned during
the POS tagging step. If the word has been marked, the package calls the G2P model to
obtain the phonetic transcription and maps the output characters with the phonemes in
the system inventory.

The identification of the language is performed at the word level. Once the language
code of the word is obtained, it is stored as a feature of the word object. This feature is
passed from the object mapping the input streams to the object that represents the word
in the Linguistic Features block. Figure 6 depicts the new tasks.

Input Stream

LID task

Normalisation &
Verbalisation

POS tagging
POS FR TF MRK

Pauses

Phonetic
Transcription

Prosody G2P

Linguistic labels
Segmentation

Linguistic features

Lexicon

more data?

y

n

French OOV
word?

y

Figure 6: New tasks in the linguistic module
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3.3.1 Technologies

As the technologies used for developing the TTS system and the LID and G2P models were
all different, we had to use Application Programming Interfaces (APIs) to communicate
them. The TTS system is developed using C++ programming language, whereas the LID
and G2P models are developed with Python. Additionally, the G2P model uses TensoFlow
library.

To communicate the Python applications we used Python/C API15. This API allows
embedding Python scripts into C++ applications. We wrapped the trained model into a
manager script that gets as input the words sent from the C++ code, then calls the model
and sends back the language code or transcription depending on the case.

The LID trained models: N-gram and CRF models can be accessed using Python, by
loading the models every time the manager script is called. The communication protocol
for the G2P is more complicated as we need to consume the trained model. We used the
onmt-main infer16 recipe available in the OpenNMT-tf library. Our G2P trained model is
accessible with a shell call. We send the word and get the phonetic transcription. Figure
7 shows the interaction of the different protocols.

C++

Application
Manager
Python Script

CRF
Model

N-gram
Model

G2P
Wrapper

Trained G2P Model
Cloud TensorFlow

Python/C

API

onmt

infer

Figure 7: Communication protocols between the TTS system and the trained models

15https://docs.python.org/2/c-api/index.html (accessed: May, 2019)
16http://opennmt.net/OpenNMT-tf/inference.html (accessed: May, 2019)
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4 Findings

In this section, we analyse the results obtained from the different experiments described
in 3. In the first two subsections examine the performances for the LID and G2P tasks
individually. In the last part of this section, we consider a small experiment combining the
two tasks.

4.1 LID Task Results

We first trained the 108 Max-Entropy classifiers to select the best one as the baseline
model and to use it in the CRF training. The methodology employed in (Chittaranjan
et al., 2014) proposed to use the binned probabilities of the Max-Entropy classifiers of the
language pair under study. However, it was not obvious that in the experiments there will
be two best classifiers, one for French and another for Basque (both different one to the
other). As a matter of fact, that is not the case as we will see in the results. In section
3.1, we explained that 36 classifiers were the same for French and Basque since they were
trained with the same data set (there was no other language included). Thus, our best
classifier is at the same time the best classifier for French and Basque language. This
means that for the CRF training, we used the binned probabilities of one classifier instead
of two classifiers as in the original paper.

Table 14 shows the best ten classifiers ranked by their result for the F1-score for the
French class, the class of our interest. Most of the best classifiers did not use another
language for training. The overall F1-score was calculated using the weighted average,
that denotes keeping the proportions of the class distribution to calculate the measure.

Language
Other

language
N-gram

Max.

Iterations
F1-score

F1-score

bqe

F1-score

fra

Both No 5 30 0.8953 0.8957 0.8949

Both No 5 20 0.8946 0.8949 0.8942

Both No 7 10 0.8939 0.8942 0.8936

Both No 5 10 0.8933 0.8934 0.8933

Both No 7 20 0.8928 0.8931 0.8925

Basque Yes 5 20 0.8931 0.8939 0.8923

Both No 7 30 0.8918 0.8922 0.8913

Basque Yes 5 10 0.8916 0.8921 0.8910

Basque Yes 5 30 0.8913 0.8922 0.8905

Both No 3 10 0.8884 0.8880 0.8889

Table 14: Best 10th Max-Entropy classifiers ordered by their F1-score for the French class.
All of the classifiers have a training set size of 6, 000 and employed word-boundary tokens

Language Analysis and Processing



39/62

Although the ranking allows selecting the best classifier, it does not show the evolution
of the metrics depending on the different parameters of configuration. Figures 8 and 9 show
the performance in terms of F1-score (weighted average) of the different configuration.
The green colour represents the classifiers trained with a training set size of 3, 000 words;
the purple one represents the training set size of 6, 000. The dashed lines represent the
classifiers trained with other languages (either English for Basque classifiers, or Spanish for
French classifiers); the dotted ones represent the classifiers trained only with French and
Basque words. The big dot represents the classifiers that used word-boundary tokens, and
the big star represents the classifiers that do not use word-boundary tokens. In the x-axis,
we compare the impact of the n value for the character N-grams, as well as the number of
maximum iterations, m. The values go from the lowest to the highest order first by the n

value and then the m value.

Figure 8: Comparison of Basque Max-Entropy classifiers. Where x̄ ∈ [0.8629, 0.8919] and
σ ∈ [0.0014, 0.0027] per series

In the figures, we can see that for the two languages, for the same configurations,
the classifiers showed a better performance when they were trained with more data. The
positive impact of increasing the dataset size is common in the field of machine learning
for several domains and models. Nevertheless, if we look at the differences between the
datasets, the improvement is about 0.01 with the double of data. This result can be
supported by Zipf’s law discussed in section 3.1.3. Under the hypothesis that the character
N-grams follow the Zipf’s law, with few data, we can cover the vast majority of the most
common N-grams.

Also, in general, using word-boundary tokens improved the results in comparison with-
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Figure 9: Comparison of French Max-Entropy classifiers. Where x̄ ∈ [0.8432, 0.8919] and
σ ∈ [0.0015, 0.0039] per series

out using them. This result is also related to Zipf’s law. As we saw in table 7, the
word beginnings and word endings most common in French were different from the ones
in Basque. By using the word-boundary tokens, we included extra information about the
distribution of the character N-grams. In the table, we illustrated this with the word be-
ginning ‘es-’ common in Basque and the word ending ‘-es’ common in French. Without
the word-boundary token, the character N-gram ‘es’ could be considered frequent for both
languages.

For the Basque case, for the same configuration, the difference between using another
language or using only Basque and French words is small. We see in figure 8 that these two
parameters group the classifiers. On the other hand, this relation is not exhibited for the
French classifiers. The French classifiers show a tendency where using another language
affects performance. The difference in the patterns can be explained by the distance
between the languages used for training the classifiers. In (Deri and Knight, 2016) they
calculated the distance of several languages pairs based on the phonetic inventory, the
grapheme system, the geological location, among other features17. The interpretation of
the distance measure is the lower the value the closest the languages are. The distance
between French and Spanish is 0.372, while for Basque and English the distance is 0.580.
It is probable that the French classifier trained with Spanish as belonging to the other
language misclassifies those words as French words, favouring the pattern found in the

17The complete list of the calculation is available on https://drive.google.com/drive/u/0/folders/

0B7R_gATfZJ2aWkpSWHpXUklWUmM (Accessed: April 2019)

Language Analysis and Processing

https://drive.google.com/drive/u/0/folders/0B7R_gATfZJ2aWkpSWHpXUklWUmM
https://drive.google.com/drive/u/0/folders/0B7R_gATfZJ2aWkpSWHpXUklWUmM


41/62

figure.
Contrary to the hypothesis, the results show no clear correlation between increasing the

number of characters in the N-grams and the performance. We see a modest improvement
from 3-grams to 5-grams for both languages, though more evident for the Basque classifiers.
On the other hand, the tendency is not kept from 5-grams to 7-grams. A similar pattern is
shown concerning the number of maximum iterations; where the increment of the number
of iterations does not show a definite improvement. Notably, the standard deviation for
the Basque classifiers goes from ±0.001 to ±0.003, excluding the classifiers trained with 3-
grams, comparing classifiers with the same configuration (series in the figure 8). Moreover,
for the French classifiers it goes from ±0.001 to ±0.004. The highest variations were found
for the classifiers trained with Spanish and without word-boundary, see the lower two series
in figure 9.

Besides the grid search to find the best Max-Entropy classifier, we also validated the best
model to evaluate if there was a dependency on data. We used the K-fold cross-validation
with randomisation of the dataset since the size of the whole corpora were more significant
than the size of the best configuration (6, 000 words). We first selected 6, 000 random
words from the corpora and then split the dataset into train and test set, ten folds were
used. The following table shows the measures obtained for each fold. The performance of
the Max-Entropy classifier shows a modest variation as the dataset is changed, an F1-score
(weighted average) of 0.8847± 0.004 with a confidence interval of 95%.

Fold F1-score F1-score bqe F1-score fra

1 0.8713 0.8710 0.8717

2 0.8797 0.8788 0.8805

3 0.8927 0.8930 0.8923

4 0.8900 0.8895 0.8905

5 0.8850 0.8830 0.8869

6 0.8840 0.8843 0.8837

7 0.8843 0.8852 0.8834

8 0.8863 0.8862 0.8864

9 0.8867 0.8870 0.8863

10 0.8867 0.8867 0.8866

x̄ 0.8847 0.8845 0.8848

z σ√
n

0.004 0.004 0.004

Table 15: Cross-validation for the best Max-Entropy classifier. Configuration of the classi-
fier: 5-gram, 30 maximum iterations, word-boundary tokens, and trained only with French
and Basque words. Confidence interval of 95%

For the CRF classifiers, we first trained the six different configurations (see table 6)
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with the default parameters of the sklearn-crfsuite library: gradient descent algorithm
using the L-BFGS18 method; L1 regularisation coefficient equals 0, and L2 regularisation
coefficient equals 1. We also set the values for the cut-off threshold for the minimum
frequency to 1, that is, the CRF classifiers ignore features that do not occur more than
the minimum frequency in the training set; and the maximum number of iterations to
500. Table 16 shows the performance of the first classifiers including the baseline (Max-
Entropy classifier). We evaluated the classifiers with the code-switched test set, a set of 95
code-switched sentences.

For the undefined class (und) we used a list that includes the punctuation symbols found
in the corpora for the case of the Max-Entropy classifiers, also whenever the probability of
being French was exactly 0.5, the classifier outputs und. We do not report the results for
the undefined class because in all of the classifiers, the accuracy for this class was 100%.
Therefore we focus our analysis in the French and Basque classes.

Classifier Tok. Acc. F1
F1

bqe

F1

fra

Re.

bqe

Re.

fra

Pre.

bqe

Pre.

fra

CRF 1 ixa 0.895 0.879 0.930 0.427 0.973 0.314 0.891 0.667

CRF 1 nltk 0.886 0.852 0.925 0.260 0.991 0.157 0.867 0.750

CRF 2 ixa 0.929 0.922 0.952 0.651 0.980 0.538 0.925 0.825

CRF 2 nltk 0.900 0.875 0.934 0.393 0.994 0.252 0.880 0.883

CRF 3 ixa 0.927 0.922 0.951 0.657 0.974 0.562 0.928 0.792

CRF 3 nltk 0.904 0.886 0.936 0.460 0.988 0.319 0.889 0.827

CRF 4 ixa 0.922 0.916 0.947 0.627 0.973 0.529 0.923 0.771

CRF 4 nltk 0.906 0.889 0.937 0.476 0.988 0.333 0.891 0.833

CRF 5 ixa 0.917 0.910 0.943 0.605 0.968 0.514 0.920 0.735

CRF 5 nltk 0.910 0.898 0.939 0.539 0.980 0.410 0.902 0.789

CRF 6 ixa 0.948 0.948 0.964 0.787 0.966 0.776 0.961 0.799

CRF 6 nltk 0.943 0.939 0.961 0.742 0.984 0.643 0.938 0.877

Max-Entropy ixa 0.920 0.922 0.943 0.702 0.929 0.762 0.958 0.650

Max-Entropy nltk 0.915 0.918 0.939 0.692 0.927 0.743 0.952 0.647

Table 16: Comparison of all LID classifiers using the code-switched test set (95 sentences).
Tok.: Tokenisation, Acc.: Accuracy, F1: F1-measure average weighted, Re.: Recall and
Pre.: Precision. In blue the best results. See the configuration of the different CRF
classifiers in table 6

The second experiments involved hyperparameter tuning for the CRF classifiers. As
early mentioned, the first experiments kept the default parameter values for training the

18L-BFGS: Limited-memory Broyden-Fletcher-Goldfarb-Shanno (an optimisation algorithm)
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classifiers. However, this can lead to erroneous conclusions if the performance is corre-
lated to these parameters and not to the configuration (dataset, tokenisation, and Max-
Entropy probabilities). We used the fit and score method for the tuning using 5-fold
cross-validation over the training dataset specified for each configuration. We worked with
RandomizedSearchCV method available in the scikit-learn library. To evaluate the classi-
fiers, we used the F1-measure for the French class. Table 17 shows the results obtained
after the hyperparameter tuning.

Classifier Tok. Acc. F1
F1

bqe

F1

fra

Re.

bqe

Re.

fra

Pre.

bqe

Pre.

fra

CRF 1 ixa 0.911 0.901 0.940 0.545 0.975 0.429 0.908 0.750

CRF 1 nltk 0.907 0.889 0.938 0.474 0.990 0.329 0.891 0.852

CRF 2 ixa 0.935 0.930 0.956 0.688 0.983 0.576 0.931 0.852

CRF 2 nltk 0.921 0.907 0.947 0.570 0.995 0.410 0.903 0.935

CRF 3 ixa 0.936 0.931 0.956 0.695 0.981 0.590 0.933 0.844

CRF 3 nltk 0.923 0.913 0.948 0.604 0.990 0.457 0.910 0.889

CRF 4 ixa 0.929 0.923 0.952 0.657 0.978 0.552 0.927 0.811

CRF 4 nltk 0.926 0.919 0.950 0.641 0.984 0.514 0.918 0.850

CRF 5 ixa 0.927 0.922 0.951 0.657 0.974 0.562 0.928 0.792

CRF 5 nltk 0.923 0.916 0.947 0.636 0.976 0.529 0.920 0.799

CRF 6 ixa 0.959 0.958 0.971 0.828 0.976 0.805 0.967 0.854

CRF 6 nltk 0.956 0.954 0.969 0.808 0.985 0.733 0.953 0.901

Max-Entropy ixa 0.920 0.922 0.943 0.702 0.929 0.762 0.958 0.650

Max-Entropy nltk 0.915 0.918 0.939 0.692 0.927 0.743 0.952 0.647

Table 17: Comparison of all LID classifiers after hyperparameter tuning. Tok.: Tokenisa-
tion, Acc.: Accuracy, F1: F1-measure average weighted, Re.: Recall and Pre.: Precision.
In blue the best results

In general terms, the patterns found with the default parameters were still valid in the
results of the tuned classifiers. In 97.92% of the metrics, the tuned version of the classifiers
performed better. The improvement of the F1-measure for the case of NLTK tokenisation
was on average 0.03 points for all the classes and 0.01 for IXA tokenisation.

We can see from the tables 16 and 17, that for the case of the NLTK tokenisation
for CRF classifiers, the recall of Basque words and the Precision of French words were
slightly better than the IXA tokenisation. The two tokenisation contrast mainly in the
identification of suffixes. NLTK tokenisation will separate a stem from the suffix only if a
hyphen already separated these; otherwise, it will be considered as a single word. In the
code-switched corpus, many of the French tokens were in the declined form without the
hyphen, and since they were annotated as French, this could have confused the classifiers.
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We can interpret the results as many of the declined French words were classified as Basque
by reason of the suffix, and words classified as French were mostly not declined words. Thus,
this produces a better recall of Basque words and better precision of French words taking
into account the number of recalled French words.

On the other hand, the IXA tokenisation models better the nature of the corpus, in
which the majority of the French tokens were NE. By using a tokeniser that accounts for
the linguistic systems of the language, it provides an appropriate data-approach. Figures
10 and 11 show the performance of the classifiers with respect to the F1-measure for the
French class. We can see the importance of the tokenisation when the parameters of the
classifiers are not set to the best parameters. The separation between IXA and NLTK
tokenisation were more drastic when the parameters were set to default values than when
the parameters were tuned.

Figure 10: Comparison all LID classifiers with respect to the F1-measure for the French
class with the default parameters

Configurations one and two are the same except for the CNG0i features, the proba-
bilities of the Max-Entropy classifier. In configuration one, we used binned probabilities,
while in configuration two, we used the probabilities directly. The effect of these changes is
not notable when we compare their results for all the classes, around 0.02 of improvement
using the probabilities directly. Nevertheless, when we compare them only for the French
class, we have an improvement of 0.081 for the NLTK tokenisation and 0.147 for the IXA
tokenisation (see the F1-measure for French class in table 17). There is no clear insight
into why the performance is improved by using direct probabilities. Nonetheless, remem-
ber that the binned probabilities were proposed in the original work (see section 3.1) as
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Figure 11: Comparison all LID classifiers after hyperparameter tuning with respect to the
F1-measure for the French class

a combination of the probabilities given by two Max-Entropy classifiers, which is not the
case in our experiments, in which we only have one Max-Entropy classifier. In that sense,
the direct probabilities provide more concise information than the binned probabilities.

For the hyperparameter tuning, we iterated 50 times, that means that 50 different pa-
rameters where tested. For each pair of parameters, we run 5-fold cross-validation resulting
in 250 different CRF classifiers for each configuration. Each fold split the training set spec-
ified in the configuration (see table 6) into a new training and test set, the evaluation of the
classifier was based on the F1-measure for the French class. The standard deviations of the
performance for each configuration were: 0.0036 (CRF 1), 0.0030 (CRF 2), 0.0011 (CRF
3), 0.0010 (CRF 4), 0.0005 (CRF 5) and 0.0018 (CRF 6). That shows that there is no
significant effect on the chosen data when the classifiers are tested in the same kind of data.
However, as figure 11 shows, when the data changes, the classifiers respond differently.

Classifier CRF 6 outperformed the rest classifiers when tested on the code-switched
test set because the majority of the samples used for its training came from the code-
switched corpus. The effect of the training data can be seen if we compare classifiers CRF
3 and CRF 4. The two classifiers only differ from the maximum length that the French
sentences have. CRF 3 was trained using a maximum length of 10 words while there was
no limit for CRF 4. We can see that even though they were training using the same
amount of data, classifier CRF 3 has a better performance for the French class. In the
code-switched corpus, the longest French sentence in one switch is 5-word length. We see
that increasing the number of monolingual French sentences (CRF 5) did not improve the
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results for the code-switching cases. The results for the code-switching sentences show a
significant dependence between the training data and the data on which the classifier will
be evaluated.

Taking into account the type of code-switching that the Navarro-Lapurdian written
corpus shows, the best classifiers correspond to the baseline, the Max-Entropy classifier and
the CRF 6 classifier. Considering the previous TTS system was assuming all the words
were Basque, the baseline is an improvement of 0.702 points in the F1-measure for the
French class. An improvement relying only on the character n-grams of the word. On the
other hand, the CRF 6 classifier shows that including information from the context helped
to have a better result, an improvement of 0.126 points (see figure 11, IXA tokenisation)
with respect to the Max-Entropy classifier. Table 18 shows the confusion matrix of each
classifier.

Predicted

French Basque

A
ct

u
a
l

French 160 50

Basque 86 1,128

(a) Confusion matrix of Max-Entropy
classifier

Predicted

French Basque
A

ct
u
a
l

French 169 41

Basque 29 1,185

(b) Confusion matrix of CRF 6 classi-
fier

Table 18: Confusion matrix of best LID classifiers using the code-switched test set

However, it is not surprising that CRF 6 classifier is the best classifier for the code-
switched corpus, as we said earlier, this classifier was mainly trained in this kind of sen-
tences. Although the dataset of this classifier corresponds to the smallest one in all of the
configurations (see table 6), we examined its performance in more extensive monolingual
sentences. We evaluated it using the test set of the configuration 5 ( 488 sentences from
Standard Basque, 1, 104 sentences from the Navarro-Lapurdian dialect, 3, 000 sentences
from French and 95 sentences from the code-switched corpus). It obtained an F1-measure
of 0.989 for the French class (support of 58, 281 words) and 0.965 for the Basque class
(support of 13, 461 words). CRF 6 is not the best classifier for that test set though; there
was a drop of 0.007 point with respect to the F1-measure for the French class in the best
performance. Still, the points dropped in the monolingual sentences could be acceptable
considering the improvement gained on the data of our interest, the code-switched corpus.

4.2 G2P Task Results

We run the training for all the configurations described in 3.2. Six configurations in total,
three considering the stress marker and three without it. For the settings with a large
number of sentences, the training time was about 10 hours per experiment, using a GPU
of 12 Gb; however, all of the experiments were run for 5, 000 training steps, also known
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as epochs. Figures 12 show the loss curves for the configurations with the stress marker.
Figures 13 show the loss curves for the configurations without the stress marker. The blue
curve corresponds to the validation loss, and the orange curve corresponds to the training
loss.

(a) Monolingual dataset (b) Code-switched dataset (c) Monolingual + Code-
switched dataset

Figure 12: Training and validation loss curve. Configurations with the stress marker

(a) Monolingual dataset (b) Code-switched dataset (c) Monolingual + Code-
switched dataset

Figure 13: Training and validation loss curve. Configurations without the stress marker

From the loss curves, we can already detect some problems in the configurations trained
only with the code-switched corpus. We see that the validation loss curve does not decrease
at the same pace as the training loss. This behaviour may be caused by the small size
of the code-switched corpus; there are only 453 phrases (sequences) for the training set
and 57 for the validation set. On the other hand, the loss curves for the monolingual and
monolingual + code switched corpus configurations show the models learnt during training
time.

To evaluate how well all of these configurations learnt, we used PER and WER measures
to compare their results for training and test sets. Table 19 shows the results obtained
by each configuration. For monolingual dataset and code-switched dataset with the stress
marker, we had an error in the sequence size; some sequences were longer than the size
limit (100 tokens). We got an error during the prediction of the validation and training
set because of the sequence size. Given time limitations, it was not possible to re-train
the models with the correct size of sequences for those sets. Instead, we eliminated the
sequences that did not satisfy the size limit. The validation set of the monolingual dataset
was reduced to 809 sentences, and the training set of the code-switched dataset was reduced
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to 365 sentences. We reported the performance for the best model under the last five best
models during training.

Configuration
Training set Validation set Test set

PER WER PER WER PER WER

Stress and

Monolingual1
1.28 0.95 3.50 5.90 3.30 5.47

Stress and

Code-switched2
2.30 3.00 75.83 80.80 72.66 83.64

Stress and

Monolingual +

Code-switched

1.46 1.22 4.36 7.27 4.34 7.30

No stress and

Monolingual
2.31 2.18 3.41 4.60 3.29 4.44

No stress and

Code-switched
2.42 2.38 51.88 69.7 53.45 73.39

No stress and

Monolingual +

Code-switched

3.03 3.50 4.46 6.23 3.88 5.72

Table 19: PER and WER in percentage for each configuration. [1] The validation set was
reduced to 809. [2] The training set was reduced to 365

The results confirm the models with the configuration for the code-switched corpus
do not generalise well; we can see it is the case of overfitting. Besides, in general for
validation and test set, the models without the stress marker had better measures than
the configurations without the stress marker (only configurations with the same dataset
can be directly comparable). It is clear that a small corpus is not suitable for this kind
of approach. In that sense, the models trained with only the code-switched corpus would
require more data to avoid overfitting. In the following analysis, we focus on the other two
configurations, monolingual and monolingual plus code-switched datasets.

In the interest of comparing all the models directly, we evaluate their performance only
in the code-switched test set, which is the kind of data we want our model to perform
well. Table 20 shows the PER and WER measures obtained for the monolingual and
monolingual plus code-switched datasets.

From the tables 19 and 20, we can see that, although the monolingual configurations
had good performance in the monolingual test set, their performance on the code-switched
test set was worse. The PER increased by 17% and 20% for the configuration with the
stress marker and the configuration without it, respectively. Moreover, the WER increase
by 26% and 35% for the configuration with the stress marker and the configuration without
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Configuration
Test set

PER WER

Stress and

Monolingual
20.16 31.62

Stress and

Monolingual +

Code-switched

8.17 15.63

No stress and

Monolingual
23.74 39.08

No stress and

Monolingual +

Code-switched

6.96 14.13

Table 20: PER and WER in percentage for the test set of the code-switched corpus

it, respectively. On the contrary, we see that by introducing code-switched sentences to
the monolingual dataset, the models were able to perform much better. If we check at the
proportion of code-switched sentences introduced concerning the monolingual sentences,
we see that, by introducing about 6% of sentences from the code-switched corpus, the
models had an improvement around 12% for the configuration with the stress marker and
17% for the configuration without the stress marker.

Given the fact we did not run cross-validation either hyperparameter tunning, we cannot
draw definite conclusions about the results obtained. However, we see these results as
promising taking into account that the Transformer architecture has shown the ability
to learnt two different phonologies and apply them even in unseen data such is the case
for the monolingual configuration tested on the code-switched corpus. As preliminary
experiments, the models trained show that the Transformer architecture is capable of
learning the phonologies, by conditioning the phonetic transcription with the language
code token, and the language-specific stress pattern. We ask the reader to bare this into
mind for the following examination of the results.

Comparing the measures strictly, we see the best trained-model is the configuration
which does not take into account the stress pattern. However, the differences between that
configuration and the configuration that also learns the stress pattern are small, around
1% in both measures. Which can be considered a bearable drop in the performance as
long as we will not need to train or use another system to get the stress pattern for each
language. In TTS systems, the stress pattern is needed to have an accurate intonation
of the words, having a wrong stress pattern can cause the listeners to do not understand
what it is being said.

Due to the sequence size limit, we had to trim some sentences of the code-switched
corpus, as we explained this caused some of the phrases in the code-switched corpus ended
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up being monolingual. We wanted to verify the performance of the two best models,
only with the phrases containing words from the two languages. Table 21 shows the results
obtained for 35 code-switched phrases that were in the test set of the code-switched corpus.
The variation from the scores achieved for the whole test set and the ones achieved for the
code-switched phrases is about 1.2% for the PER measure and 3.2% for the WER measure.
The overall scores for the test set are improved because of the monolingual sentences. The
metrics are suggesting the French words in the

Configuration PER WER

Stress and

Monolingual +

Code-switched

9.31 18.78

No stress and

Monolingual +

Code-switched

8.36 17.40

Table 21: PER and WER in percentage for the 35 code-switched phrases

We investigated the kind of mistakes that the model made in the subset of 35 code-
switched phrases. We found that most of the mistakes are related to French words. There
were 65 mistakes in the configuration with the stress marker, 34 from them were French
words. Also, there were 61 mistakes in the configuration without the stress marker, where
39 of them were French words. In the phrases, there are 69 French words, which means the
models failed predicting for about 49% and 57% of words, for the model with the stress
marker and the model without it, respectively. We consider those percentages as a high
rate error. On the other hand, not all the error have the same impact in the transcription,
for example, transcribing the French word ‘Aubisque’ as /ob’is‘ke/ instead of /ob’isk/ may
not be understood by a native speaker since there is the use of a basque phoneme /s‘/ and
the pronunciation of /e/, on the contrary, transcribing the French word ‘Louis’ as /lu’i/
instead of /lw’i/ it will sound different to a native speaker, but it will be understood.

Table 22 shows some of the errors that may have a less severe effect. We also found
words that were transcribed as e-Speak would do it. However, the transcription in the gold
standard was not the same as in e-Speak, which is a mistake in the gold standard. Bear
in mind that a non-native speaker of the dialect manually checked the gold standard.

Another intriguing behaviour is the use of the Basque phonology for French words,
for example, ‘Maxime’ being transcribed as /maSim/ but in another context being well
transcribed with the French phonology (/maks’im/). It seems that the Transformer model
is learning how the context can influence the pronunciation of the French words. However, it
will require more data and training time to learn those correlations properly. An interesting
example of this is the transcription of the French name ‘Philippe’ in the training set. The
phonetic transcription of ‘Philippe’ following the French phonology is /fil’ip/, however, it
can change if the name is declined with a Basque suffix. For example ‘Philippek’ will be
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Type Prediction Target Example

Stress

Pattern

’a a Oçafrain: /os’afR’e /

u ’u Petersbourg-eko: /p@tERsbuRg-eko/

Vowels

’e E Jean-Michel: /Z’a miS’el/

o O Aubert: /oB’eRt/

’i ’j Hiriart: /hir’iaR/

’o O Sarkozy: /saRk’ozi/

u w Louis: /lu’i/

’i j Marie-Agnés: /maR’iaJ’e/

Allophones B b Aubert: /oB’eRt/

Overpronunciation
@ ∅ Banque: /ba k@/

t ∅ Aubert: /oB’eRt/

Table 22: Example of ‘tolerable’ errors for the model that includes the stress marker

transcribed as /fil’ippek/. We see that in the nine occurrences of the name ‘Philippe’, the
model was able to transcribe correctly 8 of them. We believe this may be a feature that
can be exploited in further experiments.

4.3 Proof of concept: LID plus G2P

In an endeavour to see the behaviour of the two tasks combined, we run an experiment of
the workflow: from sentences to labelled tokens including the language code, and from the
labelled tokens to the phonetic transcription. Considering the test set of the LID models
was different from the test set used in the G2P, we decided to give more importance to
the unseen phrases by the G2P model. We wanted to see if a word was wrongly labelled,
the G2P model was able to catch the mistake and assign the correct transcription. We run
the experiment with the same 35 code-switched phrases used in the G2P task (see 4.2).
From those phrases, 23 were in the training set of the CRF classifier and the Max-Entropy
classifier.

We tried the two best LID classifiers, that is, the tuned CRF configuration No. 6 (see
table 17) and the best Max-Entropy classifier after cross-validation (see section 15). The
output of the LID classifiers was used as input for the G2P models. We tried with the two
G2P models that were trained with both monolingual and code-switched sentences (see
table 21).

Tables 23 and 23 show the metrics for the different language codes for the CRF classifier
and the Max-Entropy classifier, respectively. Table 25 shows the results with the different
of the two task combined.

The results obtained were congruent with the performance of the classifiers and models
independently. The best performance was the combination of the best LID classifier (the
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Language

code
Precision Recall F1-measure Support

bqe 0.957 0.991 0.974 225

fra 0.967 0.885 0.908 69

Table 23: Metrics for the CRF classifier

Language

code
Precision Recall F1-measure Support

bqe 0.995 0.951 0.953 225

fra 0.843 0.855 0.849 69

Table 24: Metrics for the Max-Entropy classifier

G2P model

LID classifiers

Max-Entropy CRF

Stress and

Monolingual +

Code-switched

11.49 (PER) 11.06 (PER)

23.30 (WER) 22.72 (WER)

No stress and

Monolingual +

Code-switched

12.00 (PER) 10.37 (PER)

23.20 (WER) 20.44 (WER)

Table 25: Results of combining LID classifiers and G2P models measured with PER and
WER, both in percentage

CRF classifier) and the best G2P model (No stress pattern and monolingual + code-
switched dataset). As expected, the combination of the two components increases the
error rate, PER increased 2%, and WER increased 3%. The magnitude increased it is
similar to the increment when we when from the whole code-switched test set (including
monolingual phrases) to the only code-switched phrases.

In our analysis of the ten wrong labelled French words (they were tagged as Basque),
apart from the name ‘Nicolas’ we did not observe capability from the G2P models to
overcome LID classification mistakes. Interestingly, the name ‘Piarres’ was labelled as
Basque in the LID classification, and correctly transcribed with the G2P model; this name
was wrongly tagged in the ground truth. Considering a good lexicon in the TTS system,
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the use of the LID classifier plus G2P model will account for the cases of OOV words; we
considered the result of this proof of concept as favourable towards the improvement of
the phonetic transcription of French words in the TTS.
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5 Conclusions and Future work

In this document, we presented the results of the work accomplished for this master’s
thesis. In this section, we revise our work and how this could be continued in the future.

5.1 Conclusions

This master’s thesis presented a multilingual approach to improve the phonetic transcrip-
tion for code-switched texts done by the TTS system for the Navarro-Lapurdian Basque
dialect. To do so, we combined two tasks, a Language Identification (LID) task, and a
Grapheme-to-Phoneme (G2P) task.

This work explored two classifiers for the LID task, a Max-Entropy classifier trained on
character 5-grams and a Conditional Random Fields (CRF) classifiers trained on mono-
lingual (French and Basque) and code-switched sentences. In the experimentation, the
best configuration for the Max-Entropy classifier achieved an F1-measure of 0.702 for the
French class, and the best setting for the CRF obtained an F1-measure of 0.828 for the
French class. The CRF overcame the Max-Entropy classifier by including features of the
word context and the information of the Name Entities (NE).

The Max-Entropy experiments showed that including word boundary for the N-gram
calculation improved the performance of the classifier. This result accounts for the Zipf’s
law, that describes the ratio between the occurrence frequency of n-grams and their position
in the rank. This result is more evident when the two languages are very different from the
morphological point of view, as it is the case for Basque and French. Moreover, including
another language in the training phase will help the performance if the included language
is distant from the two main languages (in our case French and Basque). Experiments,
including Spanish as noise, did not help the performance of French classifiers. While
including English as noise helped the performance of Basque classifier.

The code-switching in the Navarro-Lapurdian texts found was mainly to introduce
French NE. The corpus-driven approach helped to boost the performance of the CRF
classifier; we tokenised the sentences using a Basque tokeniser and split those words that
were NE and were declined. Across all the experiments, this approached resulted in a
better performance than a general tokenisation.

This work contributed to the first version of annotations of language code and NE in-
formation for the Navarro-Lapurdina corpus. We annotated the corpus both for the LID
module and for the G2P module; .json and .txt versions of the corpus are available for
future usage. Although using available monolingual corpora did help to train the differ-
ent modules and configurations, it is clear from the results that the more code-switched
sentences we have, the better the phenomenon will be modelled.

We run preliminary experiments to train a multilingual G2P model using the trans-
former architecture. The results showed that the trained models were able to learn the
two phonologies (French and Basque) and the two stress pattern. We believe the several
attention spaces that the transformer architecture uses allows the models to learn all the
correlations between the language code and the proper phonetic transcription. On the
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other hand, in cases where the code-switching was at the morpheme level, the G2P models
showed an acceptable performance where the French words were transcribed according to
the suffix context. That means when a French word was declined, as long as the word and
the suffix where both annotated with the language code (French for the word and Basque
for the suffix), the model was able to model the articulation phenomenon and adapt the
standard rules.

The best G2P model had a PER of 6.96% and a WER of 14.13%; this model did not
include the stress pattern in the transcription. Additional, the performance of the second
best model did not differ a lot from the first one, it got a PER of 8.17% and a WER of
15.63% and it included the stress pattern in the transcriptions. Both models were trained
using monolingual French and Basque sentences and code-switched sentences. Although
the results obtained, we cannot raise strong conclusions given that the experiments were
preliminary and further experiments and evaluations are required to confirm the nature
of the training data does not condition the results. Bear in mind that the phonology
of the Basque language establishes certain one-to-one relation between the orthography
characters and the phonemes. For languages with more complex phonology, these results
may not apply.

Finally, the best Max-Entropy classifier and the best G2P model were integrated into
the TTS system. The new TTS system does include the language information of the
word being analysed, provides the phonetic transcription of OOV French words. The TTS
system still processes the sentence word by word. However, this time if the word is French,
it searches for its phonetic transcription in the lexicon, and if it is not found, it will use
the G2P model. In order to evaluate the impact of the new linguistic module, it will be
necessary to complete the synthesis process and to run a listeners test.

5.2 Future work

According to the results obtained for the different experiments, we identified two primary
types of steps that can be done to continue this work. The first type is related to the TTS
integration, also considered mid-term type. The second type corresponds to the activities
towards building more data-adapted models, also considered long-term type.

Currently, the TTS system has been integrated with the best Max-Entropy classifier.
However, this only allows for a word-level analysis of the phrase. Although it is sufficient to
obtain an F1-measure of about 0.7, it ignores the code-switching phenomenon. Adapting
the TTS systems so a phrase analysis can be done would be the first step for a TTS system
for code-switched texts. Having the option of phrase analysis also allows us to include the
CRF classifier into the TTS system. Including the CRF classifier will increase the LID
accuracy and therefore improve the phonetic transcription.

Additionally, the integration of the two tasks (LID and G2P) into the TTS system was
done through shell calls. A further step could be testing the system response to different
environments and evaluating its scalability. Especially, in the case of the G2P model,
the shell strategy can be replaced by serving the model on a server and consuming it as
required. The tensorflow library offers the possibility of serving several versions of the
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models with better management of the computational resources.
Concerning the LID methods, we mentioned the Navarro-Lapurdian code-switching in

texts was mainly to introduce NE; an interesting next step could be to explore models
trained mainly on French NE. Another further step is to work around with unsupervised
learning techniques. Given the low-resource status of the Navarro-Lapurdian dialect, to
study techniques that do not require annotated data could help to increase the available
training data. The dialect is used in local journals, but the difficulty to automatically
labelled the passages makes it hard to leverage the use of those resources in machine
learning approaches. Unsupervised techniques could overcome those problems and provided
the benefit of using more data for training.

Finally, the G2P models are at an early stage of research. It will be necessary to perform
hyperparameter tuning to adjust the parameters that perform the best for the multilingual
phonetic transcription, as well as, to do cross-validation to discard dataset dependencies.
Furthermore, it would be interesting to verify if the results encountered with the Navarro-
Lapurdian code-switching apply for other language pairs of code-switching. Especially, in
pair of languages where the phonology of one or both languages is being affected by the
code-switching phenomenon, we presuppose this is the case for code-switching at the mor-
pheme level. By running experiments on different language pairs, we not only would be
able to check if the transformer architecture is suitable for the multilingual G2P problem
but to explore the code-switching phenomenon in the phonological boundaries. However,
that is not a trivial task; usually, there are not high-quality phonetic transcriptions, espe-
cially for code-switching utterances. Also, since the G2P models are being trained using
the transcriptions, this may suppose a limitation for the model to learn the actual phe-
nomenon.
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