
Annotation Inconsistencies in Universal
Dependencies: Identification, and Correction

Author: Akshay Aggarwal
Advisors: Daniel Zeman, Charles University, Prague

Koldo Gojenola, UPV-EHU, Spain

Euopean Master’s Programme in Language
and Communication Technologies

EM-LCT

Final Thesis

September 2019

Departments: Computational Architectures and Technologies, Computational Science
and Artificial Intelligence

Annotation Inconsistencies in Universal Dependencies ii/77

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies iii/77

Abstract
This research attempts at identification and correction of inconsistencies in different

treebanks. The inconsistencies might be related to linguistic constructions, failure of the
guidelines of annotation, failure to understand the guidelines on annotator’s part, or

random errors caused by annotators, among others. The work also proposes a metric to
test the similarity of different treebanks in the same language, when the annotation

guidelines remain the same. We offer solutions to some previously identified
inconsistencies in the scope of Universal Dependencies Project in a language neutral
manner, the solutions being reliable enough to not need a human annotator in the

pipeline.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies iv/77

__
Language Analysis and Processing

Acknowledgements
I would like to express my gratitude to my supervisors, Daniel Zeman from Charles Uni-
versity for his dedicated guidance as well as his recommendation of the thesis topic; and
Koldo Gojenola from UPV/EHU for his valuable remarks and the much needed push to
allow me to keep things structured.

I am very thankful to Prof. Markéta Lopatková and Prof. Vladislav Kuboň from
Charles University, Prague and also Dr. Bobbye Pernice from Universität des Saarlandes
for their immense help in handling all the difficulties encountered during the two years of
studying in LCT programme.

I would also like to express my most sincere thanks to the numerous people on reddit
who have constantly helped me with their pointers, and indulged me in discussions to have
me see things in a language-independent manner, while also helping me with annotation
tasks as and when required.

A very sincere vote of thanks is also extended to Charles University in Prague for the
university’s provision of computing and storage resources. A very heartfelt thanks is also
due, to the brilliant researchers and teachers therein. The thesis would not have been
possible without their brilliant shaping of the foundations of the subject within me. As
such, I would also like to thank every teacher, and professor I have ever studied from.

Special thanks are also due to the following sources for the provision of computing
resources.

Computational resources were provided by the CESNET LM2015042 and the CERIT
Scientific Cloud LM2015085, provided under the programme “Projects of Large Research,
Development, and Innovations Infrastructures”

Computational resources were supplied by the Ministry of Education, Youth and Sports
of the Czech Republic under the Projects CESNET (Project No. LM2015042) and CERIT-
Scientific Cloud (Project No. LM2015085) provided within the program Projects of Large
Research, Development and Innovations Infrastructures.

Finally, I would like to thank all the people who supported me during the two years,
my family and friends. Special thanks are due to my friends in Prague for helping me keep
my sanity in place.

v

Contents

1 Introduction 2
1.1 Inter-conversion of Treebanks . 2
1.2 Universal Dependencies (UD) Project . 3
1.3 Motivation for the Problem . 4
1.4 Formal Problem Statement . 5
1.5 Data Source . 5
1.6 Organizational Layout of the Document 6
1.7 A Brief Overview of Conventions Used . 6

2 Problems Identified in UD Treebanks 9
2.1 Intra-Language Inter-Treebank Harmony 9
2.2 Problems Caused by Change of Guidelines in UDv2 11

2.2.1 conj_head . 11
2.3 Open Problems . 13

2.3.1 Problems with Unfinished Experiments 13
2.3.2 Problems Outside Scope of Current Research 14
2.3.3 Problems with Failed Results . 15

3 Previous Research 17
3.1 Error Mining Methods . 17
3.2 Treebank Harmonization . 18

4 Experiment 1: Intra-Language Inter-Treebank Harmony 20
4.1 Dataset . 20
4.2 Tuning Parameter θ1 . 21

4.2.1 Optimization for Size Disparity . 24
4.2.2 Optimization for Genre Distribution 27
4.2.3 Other Factors . 31
4.2.4 Brief Discussion on θ1 metric . 32

4.3 Tuning Parameter θ2 . 33
4.3.1 Optimization for Size Disparity . 34
4.3.2 Optimization for Genre Distribution 37

4.4 Combining Optimized Values; Further Discussion 38

5 Experiment 2: conj_head 39
5.1 Observations Pertaining to the Problem Statement 39

5.1.1 Direction of Dependency . 39
5.1.2 Asyndetic Coordination . 40
5.1.3 Nested Conjunctions . 41
5.1.4 Conjunction Sandwich . 41

vi

Annotation Inconsistencies in Universal Dependencies 1/77

5.2 Dataset Definition . 42
5.3 Experimental Setup . 42
5.4 Algorithm . 43
5.5 Evaluation and Results . 47

6 Negative Experiment: AUX vs. VERB 49
6.1 Observations Pertaining to the Problem Statement 49
6.2 Dataset Definition . 50
6.3 Experiment . 50
6.4 Results . 53
6.5 Discussion of the Results . 54

7 Future Work Recommendations 55
7.1 Ellipsis . 55
7.2 Function Words and Associated Dependency Relations 55
7.3 nmod4obl . 56
7.4 Punctuation . 57
7.5 UD and Enhanced Dependencies . 57
7.6 Unspecified Dependencies - dep deprel . 58

Conclusion 59

Bibliography 60

List of Figures 67

List of Tables 68

List of Abbreviations 69

A Appendix 70
A.1 Terminology Pertaining to UD . 70
A.2 List of Language Codes . 72
A.3 Multiple Treebanks in Languages (UDv2.4) 75
A.4 PUD Treebanks . 76
A.5 Treebanks in UDv2.4, sans train/dev Data 77

__
Language Analysis and Processing

1. Introduction
According to Wikipedia definition of the word1, a treebank is a parsed text corpus, which
annotates syntactic or semantic structure. Built usually (but not always) on top of a
POS-annotated corpora, a treebank might seek to include phrase structure (Example-
PennTreebank [Marcus et al., 1994]), dependency structure (Example- Prague Dependency
Treebank [Böhmová et al., 2003]) or semantic information (Example- FrameNet [Baker
et al., 1998]).

A treebank can be constructed manually, by linguists spending a considerable time de-
veloping the treebank; or semi-automatically, wherein the data is automatically annotated,
and then checked for consistency. Regardless of the method used for creating a treebank, it
is an essential element in the field of computational linguistics. A treebank can be used to
study linguistic structures, find out features associated with a language, or to understand
the constructional peculiarities within a language, among others.

In this work, our main focus is on syntactic treebanks and especially dependency tree-
banks, rather than semantic ones. Therefore, the term ‘treebank’ shall be used to refer to
a syntactic (dependency) treebank henceforth, unless specified otherwise.

1.1 Inter-conversion of Treebanks
There exist a multitude of treebanks for different languages as they can be seen on
Wikipedia2, for example. As noted by Kakkonen [2006], there exist a variety of formats
and annotation schemes even for the treebanks for the same language. A well known ex-
ample to this is the case of distinctive POS tagging schemes for PennTreebank3 and for
British National Corpus4, both of which are meant for annotation of English language.
Kakkonen, in his work also notices that there exist tools which are meant to work for a
particular tagset/annotation scheme. Notice that given enough similarities in annotation
schemes, a conversion process can be drafted from one treebank to another, to make use
of the resources available for the latter.

This conversion process of a treebank from one annotation scheme to another can
be either 1:1 (one-to-one mapping) or n:m (many-to-many mapping). As in Machine
Translation, the approach can also be pivot-based, i.e. conversion to an intermediate set,
and then from the intermediate set to the desired set. For example, Interset [Zeman, 2008]
uses the pivot-based approach, implemented as a Perl library. However, the mapping can
still be deterministically applied, as in the case of POS tagsets for example.

It is important to note that not all the conversions are deterministic. If we consider
an example of a dependency treebank where the dependency structure is changed from

1https://en.wikipedia.org/wiki/Treebank
2https://en.wikipedia.org/wiki/Treebank#Syntactic_treebanks
3https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
4http://www.natcorp.ox.ac.uk/docs/c5spec.html

2

https://en.wikipedia.org/wiki/Treebank
https://en.wikipedia.org/wiki/Treebank#Syntactic_treebanks
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
http://www.natcorp.ox.ac.uk/docs/c5spec.html

Annotation Inconsistencies in Universal Dependencies 3/77

function-word head to content-word head structure, the entire dependency structures need
to be modified, thus introducing problems. Such problems can be characterized by loss
of information, loss of language-specific patterns, and induced inconsistencies in the data,
among others.

Knowing the downside of fully-automatic conversion techniques, one can argue that we
could do the task of treebank conversion manually, rather than automatically. This is not
an ideal proposition because of multiple reasons as listed:

1. The treebanks differ in size, ranging from thousands of tokens to billions of tokens. An
example would be WikiText-2 dataset [Stephen Merity et al., 2016], which contains
around 2 million words, extracted from Wikipedia articles. The manual annotation
on data as large as this requires time, money and significant human effort.

2. In case of multiple annotators for a given data, the different annotators may not
always agree on the annotation principles for the same amount of data. This is
especially the case when the guidelines are not specific enough, or in cases where the
local grammatical annotation differs from the guidelines.

3. In case of low-resource languages, it might be difficult to find a technically-sound
annotator for the language, thus rendering the process to be painfully slow, and in
some cases inaccurate.

To combat this problem, an approach of semi-automatic conversion is preferred over
manual or fully-automatic conversion. The semi-automated conversion procedure relies
on converting the data from one annotation style to another automatically, followed by a
human annotator verifying the results, and correcting them, if needed. A trade-off between
the fully-automatic and manual conversion techniques, this approach is considerably faster
than the manual approach, and allows the conversion process to be controlled for quality-
check as compared to a fully-automatic approach. However, it is worth noting that there
can be significant iterations (or revisions) of the treebanks needed before the converted
data is again available at par with or better than the data quality in original scheme.
Since the research breakthroughs and improvements don’t wait for the data to be perfect,
the task of checking for consistency, and/or quality of the treebanks has gained momentum
in recent years as a research problem.

1.2 Universal Dependencies (UD) Project
As elaborated in the previous section, there are multiple and (possibly) conflicting anno-
tation styles, even for the treebanks for the same language. Like any other measurement
criteria where the standardized unit (in form of SI unit, or ISO standards) was needed to
be defined, the different annotation styles required a similar form of standardization.

A rather more detailed history of UD Project can be accessed on UD homepage5. This
is a shorter version thereof. Although there already existed annotation schemes that were

5https://universaldependencies.org/introduction.html#history

__
Language Analysis and Processing

https://universaldependencies.org/introduction.html#history

Annotation Inconsistencies in Universal Dependencies 4/77

used as de facto standards, with the example of The Stanford dependencies [Marneffe et al.,
2013], Google universal tagset [Petrov et al., 2012], HamleDT [Daniel Zeman et al., 2014],
among others. However, there was still the problem of which annotation style to go for.
McDonald et al. [2013] in their Universal Dependency Treebank (UDT) Project tried to
provide with a universal annotation language, covering 6 languages in 2013, and expanding
to 11 languages the following year.

With the modifications resulting in development of HamleDT 2.0 [Zeman et al., 2014],
and Universal Stanford Dependencies (USD) [de Marneffe et al., 2014], the Universal De-
pendencies (UD) Project was thus born in 2014 as a means of unifying all the novel features
of different annotation formats as a universal annotation scheme consistent among different
languages.

The version 1.0 of UD (also referred to as UDv1.0) [Nivre et al., 2015] was launched
in January 2015, and covered 10 treebanks in 10 different languages. With the iterative
methodology, the project evolved to contain 146 treebanks in 83 languages in UDv2.4 [Nivre
et al., 2019]. It is worth noting that not all the treebanks in UD are manually annotated.
Rather, most treebanks are semi-automatically converted from the original source to the
UD format according to a set of guidelines6.

1.3 Motivation for the Problem
Since the introduction of UD, it has fast become a standard reference to compare scores
relating to parser performance (Che et al. [2018], Alonso et al. [2017]), study of language-
specific features [Alzetta et al., 2018], and for Shared Tasks on UD [Zeman et al., 2018].
Given how different UD treebanks are being considered as benchmarks for comparison of
different scores, it only makes sense to be considered them as Gold Standard (GS) data.

We discussed earlier how many of the UD treebanks are generated through a semi-
automatic process, and thus are liable to contain a significant amount of errors. Such
errors are detrimental in a GS, because of multiple reasons including, but not limited to:

1. In the case of parser evaluation, the parser learns errors from the data as well,
replicating them when used on test data. While this affects parser evaluation scores,
it also means that the parser does not learn the features of the language correctly, thus
causing increasingly more errors on the real world data (data not in the treebank).

2. Since semi-automatic conversion is also likely to introduce more errors, this can result
in inflating/deflating already known errors/features. These patterns can become a
nuisance on the treebank-level or might disappear altogether. Consider the case of
a language-feature F which is a rare phenomenon in language L, with the relative
occurrence of x0% in the original data. Due to conversion process, it is possible that
the relative occurrence might change to x1%, where x1 ̸= x0.

6https://universaldependencies.org/guidelines.html

__
Language Analysis and Processing

https://universaldependencies.org/guidelines.html

Annotation Inconsistencies in Universal Dependencies 5/77

• In case of the inflation of error (x1 > x0), the data which otherwise did not
exhibit F suddenly starts displaying the pattern, thus affecting the quality of
the data.

• In case of the deflation of pattern (x1 < x0), the data might not exhibit F at
all, increasing its rarity. Considering the case of parser evaluation as above,
the parser might decide to overlook this feature in entirety, thus losing out on
essential data.

3. With respect to identification of language-specific features, it is very possible that
a lot of features might start getting wrongly associated with a language (the case
of inflation as above) or they might be deemed a rare status (the case of deflation
as above). Such instances, while seemingly harmless for high/medium resource lan-
guages, can pose serious problems with respect to low-resource languages, impacting
the way the given language is studied.

It is worth noting that the problems as mentioned above are but a subset of multiple
problems associated with an erroneous GS, and how they affect UD and the research around
it. As such, these problems need to be minimized as much as possible, eliminating them
too, in an ideal case. However, doing the task manually is again a difficult task and the
automatic methods are not always 100 % reliable and/or effective. This is in part also
because of the different properties of languages, different language families, et al.

1.4 Formal Problem Statement
Having learned about the UD project, problems concerning semi-automatic conversions,
and possible effects of these problems within the scope of UD, we can now formulate our
problem statement for the scope of the thesis as follows:

Given the different treebanks in UD, the thesis aims to identify inconsistencies in tree-
banks, and provide a corresponding automated correction tool for them. The inconsis-
tencies might be related to linguistic annotation, improper adherence to guidelines, lack
of guidelines related to an observed phenomenon, annotator caused error, among others.
The proposed methods should ideally not require a human annotator for verification, and
should be as language-neutral as possible. However, language-specific methods can also be
investigated and reported.

1.5 Data Source
This work was started in January 2019, when UDv2.3 was the latest release. As such, a
majority of the experiments contained herein were first developed for UDv2.3. However,
with the release of UDv2.4, most experiments were carried over to UDv2.4 data. It is
worth noting that there are some experiments which were never done for UDv2.3 and were
started from scratch on UDv2.4.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 6/77

Nonetheless, there are some experiments that work well for UDv2.3 and UDv2.4 through-
out, and there are some that work better for only one of the releases, mainly owing to the
difference in count of the corresponding error pattern(s). To facilitate the understanding
of experiments better, each experiment shall contain a note specifying the dataset (which
also mentions the release version of UD) on which the experiment was conducted.

1.6 Organizational Layout of the Document
Now that we have formalized the problem statement, this subsection deals with organiza-
tion structure of the rest of the document. We first continue the preface of the document
by very quickly noting a few conventions that are used throughout this document. In
Chapter 2, we take a look at the different categorisation of errors, and then the typology
of different problems identified in UD treebanks. We continue the document with Chapter
3, containing the background on the research pertaining to the problems as discussed in
Chapter 2. In the subsequent chapters (Chapters 4 - 5), we layout the individual problems,
and elaborate on the method/approach undertaken to solve the problem(s). Given that
a lot of different problems were identified, and tried to be solved (some without success),
Chapter 6 focuses on the problems that could not be solved, while offering viewpoint on
what can be done in future, and/or why the used approach failed in practice. In Chapter
7, we discuss on some of the open problems as identified by the other authors, which were
not undertaken in the current work. We officially conclude the document with a chapter
on Conclusions.

Attached to the document are also a series of Appendices. The appendices contain
the data meant to help the reader understand some of the terms used through out the
document, with an example being a list of ISO language codes used throughout.

1.7 A Brief Overview of Conventions Used
This section is an overview on some of the important conventions used throughout the
length of the document.

1. The following conventions hold with respect to the UD terminology. A short intro-
duction to different terms associated with UD can be accessed in Appendix A.1.

• Unless otherwise mentioned, ‘POS’ refers to ‘UPOS’.
• Syntactic Relations in UD can be referred to by either of ‘relation(s)’, ‘deprel’,

or ‘dependency relation’. Unless otherwise mentioned, the instances refer to the
‘udeprel’ part of the relation.

2. The POS tags, as well as dependency relations are formatted in the same formatting
style, with one essential difference. Both the categories are marked orthographically
using a separate tag in LATEX, with the tag being referred to as \verb. We refer to

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 7/77

this formatting style as ‘tag’ category.
Table 1.1 shows the difference in formatting as below:

Text Format Command Output
Regular Lorem ipsum Lorem ipsum
Italic \textit{Lorem ipsum} Lorem ipsum
Bold \textbf{Lorem ipsum} Lorem ipsum
Tag \verb|Lorem ipsum| Lorem ipsum
Tag2 \texttt{Lorem ipsum} Lorem ipsum

Table 1.1: Illustration of Formatting styles

• The POS tags are always capitalized (written in upper-case), while the deprels
are always non-capitalized (written in lower-case).

• In the event of the Figure and Table Captions, or in (sub-)headings, the for-
matting style associated with ‘Tag’ category cannot be used. The formatting
style of ‘Tag2’ category is used instead.

3. When referring to specific files that are part of the standard release of the accompa-
nying module, the filename is referred to with ‘Tag’ category formatting.

4. The use of ‘Tag’ category is also reserved for nomenclature of problems. Thus, a
problem identified as ProblemX will act as the unique identifier for the problem
across the length of the document.

5. The languages are referred to by their language-identification codes whenever possi-
ble.

• A complete list of languages in UDv2.4, with their identification codes can be
seen in Appendix A.2.

• The language codes are also formatted using ‘tag’ category as defined above.
Given the nature of the dependency relations, it should be easily possible to
disambiguate the language code from the former.

• In case of an unclear distinction, the language name corresponding to the
language-code shall follow in parentheses.

6. The name of the different treebanks are written in the format of
LanguageCode-treebank_name. The truecasing in the name of the treebank is op-
tional.
For example, the SynTagRus treebank for ru can be referred to by either of ru-
syntagrus or ru-SynTagRus.

7. The tokens taken from a language other than en follow a pattern when mentioned
inline:

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 8/77

• For the tokens with Latin based orthography, the token is marked in bold,
followed by a literal translation in parenthesis. Consider the following example
from nl, written inline in text with en.
Example 1. Lorem ipsum text hier (here).

• For the tokens with non-Latin based orthography, the token is again marked in
bold, followed by the transliteration of the token in italics, and the literal trans-
lation of the token in regular case, separated by a semi-colon. The translitera-
tion, and the translation are mentioned in the parenthesis following the token.
Consider the following example from ru, written inline in text with en.
Example 2. да (da; yes), this is Lorem ipsum text here.

• For the case where LTR (Left-To-Right) languages are mentioned inline with
RTL (Right-To-Left) languages, the transliteration and translation are written
for the tokens in the order of utterance. Consider the following example, as-
suming A, B and C is written in RTL as C and B ,A. The example would
be written inline with en in the following way:
Example 3. This is the Lorem Ipsum for RTL language- C and B ,A (A, B
and C ; A, B and C)

__
Language Analysis and Processing

2. Problems Identified in UD
Treebanks
Ever since the UD project was introduced in 2014, and since the revision of guidelines in
UDv2, there have been multiple publications that highlight the problems in UD treebanks.
Some of the problems highlighted in these publications have been found to be global in
nature (i.e. they occur in almost all treebanks, regardless of the language), while the others
are related to a specific group of languages. Before we start discussing the problems, we
should specify the general kind of errors.

Agrawal et al. [2013] define different kinds of errors that can be found in a treebank.
The first kind are the random errors, characterised by the inconsistencies introduced by
the annotators owing to the distractions while undertaking the annotation procedure. The
systematic and recurrent errors are introduced not in isolated scenarios as random errors,
but can be found across the treebank in a consistent manner. These errors are usually
related to the guidelines of the treebank, in either of two ways. The guidelines could be
misunderstood by the annotator(s), and/or the guidelines might themselves be unclear (or
not appropriate to handle some cases), leaving the annotator(s) in a jeopardy. Alzetta
et al. [2017] extend the definition of systemic and recurrent errors to also include the cases
of conversion errors, caused by improper mapping of original annotation scheme to a new
scheme. Throughout the length of this document, we focus on the errors of the second
kind (systemic and recurrent errors), and try to correct them.

It is worth pointing out why the experiments listed in the section were chosen to work
on, and not others. As we will see, apart from the first problem listed in next few sections,
all of the error typologies were pointed out from a common source [Alzetta et al., 2017].
The authors of the paper note that the mined patterns were found to be common across
different sections of the it treebank, and across different languages as well. Owing to the
success of the algorithm in determining the typology of inconsistencies, it makes sense to
use it on different datasets to flag the inconsistencies within them as well.

2.1 Intra-Language Inter-Treebank Harmony
UDv2.4 contains 146 treebanks in 83 languages. As such, there are multiple languages
with more than one treebank, with some containing up to 5 treebanks. A list of all
such languages, with the associated treebanks can be seen in Appendix A.3. Regardless
of the differences in genre or the teams involved for building the treebank, the different
treebanks for a language should be close to each other if the annotation scheme remains the
same. However, this is not often the case, owing to different sources the original treebanks
originated from. The problem of determining the degree to which the different treebanks
differ from each other is not yet entirely solved. We propose a new metric for the purpose
of determining the degree to which two treebanks differ in this section. This is not an error

9

Annotation Inconsistencies in Universal Dependencies 10/77

pattern, but a metric proposal problem.
Alonso and Zeman [2016] note that if the two treebanks from the same language are

as similar as possible, the differences in parsing accuracy (training parser on one of the
treebanks, and using it to parse the other language) would be due to differences in dataset
size, and domain change; but not due to differences in dependency convention.

Rosa and Zabokrtsky [2015] show that KL-Divergence score of POS trigrams can be
effectively used for source selection for POS Tagging. In their approach, they are able
to select effectively not just a singular source, but also for source-weighting in multi-
source transfer. Computing the KL-Divergence on POS trigrams, they call the measure as
KLcpos3 , defined as follows:
Definition 1.

KLcpos3(tgt, src) =
∑

∀cpos3∈tgt

ftgt(cpos3) · log ftgt(cpos3)
fsrc(cpos3)

(2.1)

where cpos3 is a coarse POS tag trigram, and

f(cposi−1, cposi, cposi+1) = count(cposi−1, cposi, cposi+1)∑
∀cposa,b,c

count(cposa, cposb, cposc)
(2.2)

with fsrccpos3 = 1 for each unseen trigram.
Intuitively, treebanks of the same language should be a better fit for single-source

transfer than a treebank from another language, and so KLcpos3 for a single-source transfer
can be considered as a good benchmark for deciding this. However, KLcpos3 is a variant
of KL-Divergence, and thus is non-symmetric. Therefore, we should rely on a metric that
essentially calculates the divergence of the treebanks from each other, in both directions.

Combining the above two observations, we can arrive at a definition of treebank har-
mony.
Definition 2. Given two treebanks A and B, we say the treebanks are in harmony with
(or, are harmonious to) each other, iff

1. The difference in labelled attachment scores (LAS) when trained on one treebank
and tested on another, denoted by θLAS, is less than or equal to a given threshold θ1.
Mathematically, it can be represented as:

θLAS = |LASx,x − LASy,x| ≤ θ1 ∀[x, y ∈ {A, B}] (2.3)

where LASP,Q indicates LAS when trained on P and tested on Q.

2. The difference in KLcpos3 scores of the treebanks calculated in both directions, de-
noted by θP OS, is less than or equal to a given threshold θ2.
Mathematically, it can be represented as:

θP OS = |KLcpos3(x, y)−KLcpos3(y, x)| ≤ θ2 x, y ∈ {A, B} (2.4)

where KLcpos3(P, Q) indicates KLcpos3 score of Q as an estimator for P .

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 11/77

Mathematically, we denote two harmonious treebanks A, B as A
.= B over (θ1, θ2). The

relation of harmony is reflexive, symmetric, but not transitive.
As mentioned earlier, there exist up to 5 different treebanks (not including PUD) for

a given language. More often than not, the treebanks cover different domains, and are
of different sizes. As such, it becomes an important criteria to determine the appropriate
values for θ1 and θ2. If the values are too large, we run the risk of saying the treebanks are
harmonious even when they might not be. Also, if the values are too small, we could be
overlooking at the effect of domain change and dataset size, to mistake the two treebanks
as being non-harmonious to each other.

We return to this problem in Chapter 4, when we look at it in detail with instances to
determine as a metric on which to base the success of experiments in the research.

2.2 Problems Caused by Change of Guidelines in UDv2
A summarized version of changed guidelines from UDv1.x to UDv2 can be accessed online1.
Most of the changes in guidelines could be processed in an automatic manner, for example
the renaming of particular POS tags or dependency relations. There were still changes
that could not be applied deterministically, and those form the majority of the problem
conversions as we shall see in this section.

It is important to note that the changes had to be applied to 64 treebanks in 47
languages as they moved from UDv1.4 to UDv2.0, and so the analysis might be limited to
these 64 treebanks only in this case. However, it is worth scouting for these patterns in the
newer treebanks, given how some (if not all) of them might be a cause of concern therein.

The task of POS tagging, and dependency parsing of the input sentences were done
with the help of UDPipe [Straka and Straková, 2016], which contains the trained models for
UDv1.2, UDv2.0, UDv2.3 and UDv2.4. The tree structures shown henceforth are generated
as per Parsito format [Straka et al., 2015].

2.2.1 conj_head
In the changed guidelines, there were two changes with respect to conjunction tags CCONJ
and SCONJ; and the dependency relations, cc and conj. The changes are listed as follows:

1. The POS tag CONJ in UDv1 was changed to CCONJ in UDv2, to make it more parallel
to SCONJ.

2. The coordinated structures are attached to the immediately succeeding conjunct in
UDv2, as opposed to UDv1 where they were attached to the first conjunct.

Let us look at an example to understand this better. Consider the following example,
taken from UDv2.4 en-LinES treebank. The dependency graph for this input, as per
UDv1.2 and UDv2.0 looks as shown in Figure 2.1 and 2.2 respectively.

1https://universaldependencies.org/v2/summary.html

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 12/77

Example 4. This mode conforms closely to the ANSI-92 Level 1 specification, but is not
ANSI-92 Level 1 compliant.

Figure 2.1: Tree Structure, as per UDv1.2 for Example 4

Figure 2.2: Tree Structure, as per UDv2.0 for Example 4

Due to the data size disparity in UDv2.0 and UDv1.2, the POS tags are aligned better
in the former over the latter. Let us take a look at the tree structures with respect to but
token. We can notice the difference in two aspects:

1. POS tag of the token is changed from CONJ to CCONJ.

2. Given the two conjuncts viz. conforms, and compliant, the token is linked to the
former in UDv1.2, whereas the same token is linked to the latter in UDv2.0.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 13/77

Of the two changes in guidelines, the first one (renaming of tag) can be applied deter-
ministically, and automatically throughout the treebank(s). The second change, however,
can be classified as head identification error. The pattern in question was also identified
by Alzetta et al. [2017] in their paper, where they note that it contributes to 24.65 % of
total discovered error instances. This implies that this is indeed a major error category,
and needs to be handled well. We do take a look at this error type in our experiments, in
Chapter 5, and discuss about it in detail therein.

2.3 Open Problems

2.3.1 Problems with Unfinished Experiments
This segment deals with problems that have been identified in the context of UD, but the
experiments on the attributed problem are not yet complete. Nonetheless, we define such
problems in short here.

Non-projective Structures

Let us understand non-projectivity through the following example from LinES treebank in
en data, and the tree structure as shown in Figure 2.3.

Figure 2.3: Sample Non-projective Tree

In the graph, notice the edge going from see to that. We can see that the edge crosses
over another edge in order to link the two tokens. Informally, presence of such crossing
edges in a tree makes it non-projective in nature.

To define the concept of non-projective structures in a formal manner, we need to define
a few notations. We use the same notations as used by Mambrini and Passarotti [2013].

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 14/77

If a node j depends on a node i, we call node j as a child node of i (also, i is parent
node of j), represented as i −→ j. We use i < j to denote the node i preceeding node j in
the tree T . A node v lying in between the nodes i and j in the tree can be represented as
v ∈ (i, j). Also, we use the notation v ∈ Subtreei if node v is part of the subtree rooted
at node i. From Havelka [2007], we can define the condition of projectivity of a tree as
follows:

Definition 3. A given tree T is projective in nature iff

i −→ j & v ∈ (i, j) =⇒ v ∈ Subtreei ∀i, j, v ∈ T (2.5)

If a given tree does not satisfy the above condition, it is said to be non-projective in
nature. Furthermore, in case of non-projectivity, node v is said to be in gap, represented
as v ∈ Gapi↔j. The double headed arrow signifies the nodes being considered irrelevant
of their order of occurrence in the tree.

In Mambrini and Passarotti [2013], the authors analyze the occurrences of the non-
projective structures in grc, where they also study the effect of genre on the counts of non-
projective structures (edges, and trees) in the language. Nonetheless, there has been no
study conducted on the state of non-projective structures within the scope of all treebanks
in UD to the best of our knowledge.

While non-projectivity is a characteristic of some languages, and especially more so of
certain genres (poetry, for example); the increasing count of non-projective trees has been
shown to affect dependency parsing in a negative way. Owing to semi-automatic conversion
scheme, a lot of non-projectivities might also be introduced artificially. Thus, it becomes
important to not only identify such cases of false non-projectivities (i.e. the cases which
should have been marked as projective, but were annotated as non-projective), but also to
remove them as it affects the treebank quality in general.

2.3.2 Problems Outside Scope of Current Research
Auxiliary as Head

Auxiliaries was another category that underwent significant changes in guidelines when
moving from UDv1.4 to UDv2. Even though there was an extensive discussion about
auxiliaries, and the changes that could be made; there were still problems. Some of these
problems were anticipated, while there were others which could not be anticipated at the
time. The following are the list of changes for auxiliaries from UDv1.4 to UDv2:

1. The definition of AUX was extended to include copula verbs, and non-verbal TAME
(Time, Aspect, Mood, Evidentiality. Might/might not include Voice and Polarity)
particles.

2. The definition of AUX was also extended to include cop (copula) verbs as they perform
grammaticalized function in nominal clauses.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 15/77

3. The aux relation was also expanded to include non-verbal TAME particles, as in the
case of AUX.

4. The relation auxpass was removed from UDv2.0, making it as a subcategory of the
larger aux relation, in the form of aux:pass. Essentially speaking, auxpass was
demoted to a sub-category of aux relation.

In the discussion of this problem, we refer to the case when an auxiliary (AUX or aux)
is treated as the head of a dependency relation. Although allowed in certain cases, the
auxiliary should not be marked as the dependency head in general sense. Consider the
following example in Figure 2.4, taken directly from Alzetta et al. [2017].

Figure 2.4: Example taken from Alzetta et al. [2017]

In the figure, O refers to the original (incorrect) instance, whereas C refers to the
corrected instance. Notice how the incorrect instance has è (AUX) serving as a dependency
head. Alzetta et al. [2017] notice that this particular error, classified as a head identification
error, contributes to around 13 % of the total discovered erroneous instances.

2.3.3 Problems with Failed Results
AUX and VERB Distinctions

There is a significant overlap between VERB and AUX. The distinction between AUX and
VERB is not always explicit, and is very liable to be affected by the agreement between the

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 16/77

definitions of the terms in UD, and according to the traditional language-grammar. This
is noted in part in the guidelines for UDv2 as well, where the following point is noted, with
reference to the definition2 of AUX:

[AUX] is often a verb (which may have non-auxiliary uses as
well) but many languages have nonverbal TAME markers and
these should also be tagged AUX.

One of the proposed change in guidelines was to get rid of AUX altogether3. However, as per
findings of de Lhoneux and Nivre [2016], a parser is not able to learn the distinction between
the two categories, when they are merged together. The authors observe a decrease in
parsing scores when the two categories are not explicitly separated. This was the principal
motivation behind keeping the two separate, but there are still overlaps.

In UDv2.4, it was proposed to limit the AUX by a list. The list would essentially identify
all auxiliaries by a common definition, and thus would be able to create a better distinction
between the two conflicting categories of AUX and VERB. This could be realized just in part
though, principally because of the conflicts between traditional grammar-based definitions
of the two categories, and the definitions as per UD.

With respect to this particular error type, the experiment to separate the classes of AUX
and VERB was unsuccessful with respect to UDv2.4, when not using the aforementioned list.
We do discuss the failed experiment in Chapter 6 nonetheless. It is important to note that
there still exist problems with respect to the differentiation between the two categories, as
can be seen in the list of open issues on the subject4.

2https://universaldependencies.org/u/pos/all.html#aux-auxiliary
3https://github.com/UniversalDependencies/docs/issues/275
4https://github.com/universaldependencies/docs/issues?utf8=%E2%9C%93&q=is%3Aopen+aux

__
Language Analysis and Processing

https://universaldependencies.org/u/pos/all.html#aux-auxiliary
https://github.com/UniversalDependencies/docs/issues/275
https://github.com/universaldependencies/docs/issues?utf8=%E2%9C%93&q=is%3Aopen+aux

3. Previous Research
In this chapter, we discuss some of the solutions that have been proposed/used by the
different researchers. The solutions discussed here are limited in the scope of the problems
identified in the last chapter. It is important to note that there have been numerous
papers studying the different treebanks in UD, and the set of problems encountered while
changing the annotation from the guidelines for UDv1 to UDv2. While such research
is helpful in pointing out cases where the annotating teams had difficulties during the
conversion procedure, we do not discuss those references here.

3.1 Error Mining Methods
Error mining in treebanks can be done in multiple ways. There is a possibility of using
hand-written rules, and scouting for the patterns in the relevant treebank, which works
for finding inconsistency typologies that are known beforehand. The other approach is to
combine the statistical approach, with the manually defined rules [Ambati et al., 2011].
This method is what is often called as heuristics based search, since it identifies a lot of
patterns, which can then be used to look for errors in the data (in some cases, this can
be done automatically). The last approach is automatic scouring for error patterns within
the scope of the treebank, also known as automatic error mining methods.

Boyd et al. [2008] first introduced the idea of error mining methods in dependency
treebanks using variation nuclei, expanding on the idea of using n-grams based variation
nuclei for discontinuous annotations from Dickinson and Meurers [2005]. It is important
to point that the original idea was for syntactic annotation, while the method proposed in
this literature was specifically tuned for dependency treebanks. This is often referred to
as the first automatic error mining method in dependency treebanks.

The original method for discontinuous structural annotations involved looking at n-
grams within a sentence that might have been separated by tokens. This was in turn, an
extension of the previous research on n-gram variation nuclei for continuous annotation
[Dickinson and Meurers, 2003a,b]. By extending the method to discontinuous annotations,
Dickinson and Meurers were able to look at more patterns in TIGER corpus. Moreover,
this meant that instead of looking at plain POS tags and identifying the variations therein,
the words could now be looked at in order to generalize the context.

The method proposed by Boyd et al. was looked at in context of UD Treebanks by
de Marneffe et al. [2017] for three languages (en, fi, fr). The authors further extended the
method to use word lemmas instead of simply using word forms, and also evaluate on the
automatically annotated treebanks to identify more inconsistencies. The first extension
of using lemmas works well for languages that are not too morphologically-rich (en, fr),
but fails otherwise. The second extension is done at the cost of a drop in precision, but
without a significant gain in recall.

The method proposed by Boyd et al. has an inherent problem instance of data sparse-

17

Annotation Inconsistencies in Universal Dependencies 18/77

ness. De Kok et al. [2009] implemented an algorithm based on n-grams and suspicion
sharing across the n-grams by extending the methods of Sagot and de La Clergerie [2006]
and Van Noord [2004]. Their approach however, relies on classifying each sentence within
the results of a parsed corpus as a parsable or unparsable sentences. This again is not very
optimal for large treebanks.

In their work, Dell’Orletta et al. [2013] devised an unsupervised algorithm called LISCA
(LInguiStically-driven Selection of Correct Arcs), which attempts to find the errors in
dependency parsing by building a statistical model on the data from a gold standard.
The algorithm learns the probability of the dependency arcs, given the gold standard,
capturing the linguistic data and thus ranking the dependency arcs on the test data by
their probability of occurrence.

In Alzetta et al. [2017], the authors identify errors in newspaper section of Italian UD
Treebank by using the same algorithm. They narrow the search space for the errors by
binning the arcs according to the scores into 10 bins of equal size and an extra bin to include
the extra cases, and manually inspecting the bins for errors, while concentrating on the last
two (and the extra) bins containing the arcs with lowest scores. Analysing the data, 36%
of the arcs in the low ranking bins consisted of random errors, while the remaining ones
were found to be systemic and recurrent errors (even in treebanks of different languages).

While the algorithm mentioned above successfully points out the erroneous arcs in the
different datasets, it is sensitive to the genre of the data. The authors note that the data
should ideally belong to the same register/genre for the algorithm to function at its best.
While this is problematic because in some treebanks it is not possible to separate the
data from different genres, there is also a possibility of unavailability of enough data in a
particular genre (i.e. a single genre contributing in a very small manner to the size of the
treebank).

Added to these difficulties is the difficulty of training the algorithm. The algorithm
essentially needs to be trained on a gold standard data, from which it builds a statistical
model that is used to generate the probability scores of a dependency arc. In case of
languages with no high-quality parsers available or for low-resource languages, this poses
a cold-start problem where we do not have the data to train the algorithm, and so the
algorithm cannot be used at all.

We tried solving this problem of cold-start by using the method of k-fold cross validation
(with varying values of k). We selected one fold as test data, and trained the algorithm
to build a statistical model on the remaining data. The experiment is under manual
evaluation and owing to the large data size, would not be completed in time to include it
in the current research document.

3.2 Treebank Harmonization
Owing to different annotation schemes for the different treebanks of a language, there is
no standard evaluation metric to compare the relative distance of treebanks’ annotation
to each other to the best of our knowledge.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 19/77

Alonso and Zeman [2016] compared the treebanks for es in UDv1.3. They assess the
similarity of the different treebanks using dependency parsing. A high-efficiency parser was
trained on one of the treebanks, and then trained on the another. The idea was to notice
the drop in LAS scores, and if the difference in scores was more than what was intuitive,
the treebanks were marked as not similar enough. The same technique of evaluating the
different treebanks for ru against each other was also used in Droganova et al. [2018]. In
their work spanning the different ru treebanks in UD, Droganova et al. also point out
problems with individual treebanks. This can again be used to compare and scout for
patterns that are present across the different treebanks for the language.

Nivre and Fang [2017] proposed an evaluation metric called CLAS (Content-based LAS)
score that disregard the punctuation and other functional nodes, evaluating LAS based on
content words only. The idea here was to give equal treatment to the languages with weak
morphology and languages with strong morphology. For example, a single inconsistency
in fi will affect the parsing score more than a single inconsistency in en owing to the
differences in the extent of morphology used by the languages. The metric was evaluated
as a secondary measure in CoNLL 2017 Shared Task [Zeman et al., 2017]. The primary
metric for the Shared Task was macro-averaged score for the different languages. It was
reported that the there is no significant performance difference in parser performances
when the evaluation metric was changed from macro-averaged LAS score to CLAS score.

__
Language Analysis and Processing

4. Experiment 1: Intra-Language
Inter-Treebank Harmony
We previously defined the term harmony between two treebanks in Definition 2 (Section
2.1). We also mentioned that we need to optimize the two parameters (θ1, θ2) for any
languages to not over-reject or over-accept the effects of dataset difference, and domain
change.

4.1 Dataset
Before we start tuning the hyper-parameters, we need to define our dataset. This experi-
ment was conducted entirely on UDv2.4 data, without exceptions. To minimize the effect
of dataset size disparity, we remove from consideration all the treebanks which are missing
train data, as listed in Appendix A.5. From these treebanks, we remove only the ones
which do not contain any train data whatsoever.

Furthermore, there are treebanks which have data in the format where it needs to be
fetched from another corpus and is not readily available for usage. We discard such tree-
banks as well from the consideration. Thus, the effective dataset for this entire experiment
can be seen in Table 4.1 as follows:

Language Count Treebank Names
cs 4 CAC, CLTT, FicTree, PDT
en 4 EWT, GUM, LinES, ParTUT
es 2 AnCora, GSD
et 2 EDT, EWT
fi 2 FTB, TDT
fr 3 GSD, ParTUT, Sequoia
gl 2 CTG, TreeGal
grc 2 Perseus, PROIEL
it 4 ISDT, ParTUT, PoSTWITA, VIT
ko 2 GSD, Kaist
la 3 ITTB, Perseus, PROIEL
lt 2 ALKSNIS, HSE
nl 2 Alpino, LassySmall
no 3 Bokmaal, Nynorsk, NynorskLIA
pl 2 LFG, PDB
pt 2 Bosque, GSD
ro 2 Nonstandard, RRT
ru 3 GSD, SynTagRus, Taiga
sl 2 SSJ, SST

Continued on next page

20

Annotation Inconsistencies in Universal Dependencies 21/77

Language Count Treebank Names
sv 2 LinES, Talbanken

Table 4.1: Dataset for the Experiment on Harmony Between Treebanks, UDv2.4

4.2 Tuning Parameter θ1

In accordance with Alonso and Zeman [2016], we report the LAS scores in form of confusion
matrices for each of the languages. The horizontal rows mark the treebank the parser was
trained on, while the vertical column marks the treebank on which the parser was tested.
The results can be as seen in Table 4.2.

es AnCora GSD
AnCora 86.36 68.07
GSD 68.81 85.30

et EDT EWT
EDT 85.19 75.60
EWT 72.76 92.35

fi FTB TDT
FTB 92.30 48.65
TDT 52.17 87.78

gl CTG TreeGal
CTG 82.02 25.27
TreeGal 56.67 90.97

grc Perseus PROIEL
Perseus 70.54 43.23
PROIEL 32.02 75.84

sv LinES Talbanken
LinES 91.37 74.50
Talbanken 76.05 91.99

fr GSD ParTUT Sequoia
GSD 91.07 78.99 78.17
ParTUT 78.38 96.12 77.32
Sequoia 78.59 78.23 93.85

ko GSD Kaist
GSD 63.95 28.07
Kaist 32.76 72.27

lt ALKSNIS HSE
ALKSNIS 90.02 51.66
HSE 47.26 88.98

nl Alpino LassySmall
Alpino 88.10 79.06
LassySmall 76.56 92.34

pl LFG PDB
LFG 98.72 67.10
PDB 84.11 88.13

pt Bosque GSD
Bosque 87.91 63.63
GSD 36.67 88.67

roa Nonstandard RRT
Nonstandard 00.00 00.00
RRT 00.00 84.49

sl SSJ SST
SSJ 94.43 56.01
SST 71.82 88.07

aAnnotated data not in correct CONLL-U format,
UDPipe parser not trainable or testable on the data

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 22/77

la ITTB Perseus PROIEL
ITTB 86.29 38.34 39.38
Perseus 29.18 77.34 38.53
PROIEL 35.83 34.12 75.82

ru GSD SynTagRus Taiga
GSD 90.56 70.62 61.85
SynTagRus 73.55 86.59 67.22
Taiga 70.02 69.75 84.62

no Bokmaal Nynorsk NynorskLIA
Bokmaal 91.47 82.27 61.20
Nynorsk 85.26 91.12 62.01
NynorskLIA 69.79 68.66 89.03

cs CAC CLTT FicTree PDT
CAC 85.25 72.57 80.78 78.55
CLTT 68.92 93.83 64.40 63.64
FicTree 74.20 69.51 92.30 74.25
PDT 81.61 76.21 83.15 84.85

en EWT GUM LinES ParTUT
EWT 88.29 77.06 75.56 70.30
GUM 76.36 91.48 75.50 71.39
LinES 70.41 69.81 90.83 67.05
ParTUT 66.70 68.25 69.79 94.09

it ISDT ParTUT PoSTWITA VIT
ISDT 90.10 88.48 64.79 79.22
ParTUT 84.72 94.18 62.40 76.94
PoSTWITA 81.71 81.71 84.83 75.33
VIT 82.57 82.25 63.26 86.26

Table 4.2: LAS Scores (in %) for Different Treebanks per language, UDv2.4

A couple of inferences can be made quite clearly from the data, wherein we see how the
performance of the parser model is affected with respect to treebanks. Let us take a look
at the parser performances for pt, and gl for example. As can be seen clearly, the parser
performs differently on different treebanks for each of the languages. Even with significant
considerations for the disparities in size, genre, etc. the two treebanks can be considered
really divergent from each other.

Similarly, if we look at ko parser scores, we can see that the parsers perform really
badly even when training and testing data remains the same. This is testimony to the fact
that the treebanks do not follow consistent annotation scheme within itself. As a result of
the inconsistency within the treebank itself, the parser trained on such data automatically
performs worse for the other treebank.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 23/77

We have almost discounted for the size of the data by selecting the treebanks with some
training data available, but not entirely. Consider the case of cs treebanks for example.
The token counts of the train data in different treebanks for cs is as shown in Table
4.3. Owing to smaller training data, the parser trained on cs-CLTT data performs the
poorest among the parsers in the language. At the same time, due to larger training data,
the parser performs the best when trained on cs-PDT data. Therefore, we need to still
regulate for train data size disparities.

Treebank Sentence Counts
CAC 23 478
CLTT 860
FicTree 10 160
PDT 68 495

Table 4.3: train Size of cs Treebanks

If we take a look at the sub-table containing LAS scores for parsers in fi, the two
parsers perform unsatisfactorily on the other treebank. However, looking at the data in
Table 4.4, we can safely discount the effect of size disparity as the sole reason for the
low performance. Looking at the GitHub repositories for the two treebanks12, and the
base reference for TDT Treebank [Haverinen et al., 2014], we can understand the genre
distribution in the two treebanks, as listed in Table 4.5.

Treebank Sentence Counts
FTB 14 981
TDT 12 217

Table 4.4: train Size of fi Treebanks

Treebank Genres
FTB grammar-examples
TDT news, wiki, blog,

legal, fiction,
grammar-examples

Table 4.5: Genres in fi Treebanks

Notice that while the TDT Treebank contains multiple genres, FTB is composed of a
singular genre. In sub-section 4.3.2, we study the effect of genre classification with respect
to parser performances. It is worth noting that while the genre classification can easily be
done in case of some treebanks (as in case of fi above), it might not always be possible to
do so.

1https://github.com/UniversalDependencies/UD_Finnish-FTB
2https://github.com/UniversalDependencies/UD_Finnish-TDT

__
Language Analysis and Processing

https://github.com/UniversalDependencies/UD_Finnish-FTB
https://github.com/UniversalDependencies/UD_Finnish-TDT

Annotation Inconsistencies in Universal Dependencies 24/77

4.2.1 Optimization for Size Disparity
To properly account for size disparities, we need to keep in mind two aspects, as listed:

1. The data is homogeneous in nature. By homogeneous, we mean that the data should
be crawled from same or very similar sources. Also, the term also implies that the
data should be from a singular genre so that genre based fluctuations do not affect
the scores.

2. We should have sufficient data available, so as to be able to compare the different
sized splits, and their relative performances.

hi-hdtb treebank is one of the treebanks that satisfies both the above conditions. The
treebank’s split of train, test and dev data is as shown in Table 4.6. As an additional data
reference, we use news section of hi-pud. The size of the splits of the PUD treebanks in
general, is as shown in Table 4.7.

split Sentence Counts
dev 1 659
test 1 684
train 13 304

Table 4.6: Size of hi-hdtb treebank

Category Sentences
News 500
Wiki 500
Total 1 000

Table 4.7: Sentences in PUD treebanks

We process the train data of hi-hdtb in a workflow, defined as follows:

1. Split the data into sizes in the range of {5, 10, ..., 95} % of the original data size.

2. On the split data, train a UDPipe Parser for the split, with the dev data given as
heldout, and report the scores on hi-hdtb test data, as well as news section of hi-pud.

3. Report the LAS Scores in a graphical format.

The graph in Figure 4.1 shows two curves that demonstrate the performance of the
parser as the training data increases in size. In case of hi-hdtb train data, the splits until
around 12.6% are less than the size of the test data. That is marked clearly in the graph as
the lowest performance score by the parser. As the split size increases, and thus the number
of training instances, the parser performs better and better, the performance increasing
monotonically.

In case of hi-pud news section, even at 5%, the size of training data exceeds the size
of test data. However, the parser performance is significantly lower than on hi-hdtb test
data. Also, unlike the previous curve, the performance is largely varying, with multiple
local minima.

Even though the data belongs to the same genre in the two testing sets, there is consid-
erable difference between the two. In the case of hi-hdtb data, the dataset is crawled from

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 25/77

Figure 4.1: LAS for size disparity

newspaper dailies, and thus contains news articles, as they were printed. In the case of
hi-pud news section though, the data was originally in either of English, German, French,
Italian or Spanish, and they were translated to Hindi by using English as pivot language.
Thus, there are instances where the nuance of the original language might be lost, since
the news reporting style in the two languages is not very often similar.

Nonetheless, we can make some general statements about the performance by looking
at the given data. We notice that based on the available data for training, the performance
of the parser can vary as much as 10% when on the same data (i.e. data belonging to same
documents as well).

Since the parser performance starts saturating at different points, we can describe the
saturating points in the form of size factors, and how the LAS score can be affected when
considering the effect of size alone. We give a formula for the upper bound of the difference
in metrics based on size first, and then illustrate it with an example.

Definition 4. Given two treebanks, A and B, with α as the size ratio of the treebanks,
we can bound θLAS by an upper bound given by θ1,size as below.

size(A) > size(B) =⇒ α = size(A)
size(B)

θ1,size =


min(10,ζ)

32 + γ
16 + ϵ

8 + δ
4 + β

2 if θLAS > 1
1 otherwise

(4.1)

where ζ = ⌊α − 80⌋, γ = ⌊α − ζ − 60⌋ ≤ 20, ϵ = ⌊α − ζ − γ − 40⌋ ≤ 20, δ =
⌊α− ζ − γ − ϵ− 20⌋ ≤ 20, β = ⌊α− ζ − γ − ϵ− δ⌋ ≤ 20, β, δ, ϵ, γ, ζ ≥ 0

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 26/77

Example 5. We are given two treebanks, containing the same genre of data, differing in the
size. Let us assume the two given parameters as:

α = 92.5
θLAS > 1

We can estimate the upper bound on θLAS as follows:

ζ = ⌊α− 80⌋ = ⌊92.5− 80⌋ = ⌊12.5⌋ = 12
γ = ⌊α− ζ − 60⌋ = ⌊92.5− 12− 60⌋ = ⌊20.5⌋ = 20

ϵ = ⌊α− ζ − γ − 40⌋ = ⌊92.5− 12− 20− 40⌋ = ⌊20.5⌋ = 20
δ = ⌊α− ζ − γ − ϵ− 20⌋ = ⌊92.5− 12− 20− 20− 20⌋ = ⌊20.5⌋ = 20
β = ⌊α− ζ − γ − ϵ− δ⌋ = ⌊92.5− 12− 20− 20− 20⌋ = ⌊20.5⌋ = 20

θ1,size = 10
32

+ 20
16

+ 20
8

+ 20
4

+ 20
2

= 0.3125 + 1.25 + 2.5 + 5 + 10 = 19.0625

θLAS ≤ θ1,size = 19.0625

We placed an upper cap in the formula, with respect to the parameter ζ. This is
important, since we do not want the parameter to become large enough to dominate the
other calculated parameters. Consider the following example:
Example 6. Consider two treebanks with same genre, and with difference in the size metric.
Let us the assume the two given parameters are:

α = 120
θLAS > 1

In this case, we have the calculated parameters

ζ = 40; γ = ϵ = δ = β = 20

If we calculate the parameters with respect to ζ and γ without an upper cap, we get

ζ

32
= 1.25

γ

16
= 1.25 = ζ

32

At this point, the final parameter ζ starts having an equal influence as that of γ.
In case of a high enough value of α parameter, the parameter shall influence the results

as heavily as other parameters, if not more. We do not want that to happen, and thus we
restrict the calculated value by using the limit of 10.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 27/77

4.2.2 Optimization for Genre Distribution
Optimization for Genre distribution is considerably more difficult than that for size. Very
often, the genre distribution in the treebanks is not proportional. Also, we need to account
for the fact that it might be easy in some cases to identify the proportions of the genre
distribution easily, as we showed in Table 4.5. However, it might not always be the case,
especially in the case if the treebank has been converted multiple times, i.e. the original
annotation may be lost/unavailable.

For the optimization procedure, we use fi treebanks, the counts and genre for which
were given in Tables 4.4 and 4.5 respectively. The distribution counts of different genres
in fi-tdt is given in Table 4.8.

Category Sentences Count
grammar-examples 2 002
legal 1 082
news 1 120
wiki 2 269
Others 5 744

Table 4.8: Distribution Counts of various genres in fi-tdt treebank

Since we are accounting for the genre differences, it only makes sense to keep the size
of the dataset constant. We can compare the impact of addition of genres to the data in
two ways. The first is by adding genres in fixed proportions so that the proportion of each
genre in the treebank is equal, while the size of treebank remains constant. The second
approach is to add an equal number of instances of each genre. We would use the first
approach in our case, because a parser trained on the second approach has a possibility of
learning more general features of the language, and performing better, rather than focusing
on the proportion of the genres involved therein.

Definition 5. In a treebank, consider n different genres, with count of genre i in the
treebank given by Gi. The total size of the treebank T can be given by:

|T | =
n∑

i=1
Gi

To study the effect of genre variance, we need to add genres to the data, such that the
total size of the treebank remains the same. We say we arrive from a given treebank T to
a modified treebank T

′ with the number of genres given by n and n + 1 respectively in the
following way:

1. The size of the treebank doesn’t change, i.e.

|T ′| = |T |

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 28/77

2. The added genre in T
′ has equal number of instances to other genres. We refer to

the number of instances for a genre in T
′ by G

′ .

∀i ∈ {1, ..., n}[G′

i+1 = G
′

i]
∀j ∈ {1, ..., n− 1}[Gj+1 = Gj]

=⇒
n+1∑
i=1

G
′

i =
n∑

j=1
Gj

=⇒ ∀i ∈ {1, ..., n}[(n + 1) ·G′

i = n ·Gi]

With the proposed addition methodology, we will be able to study how the addition
of genres in proportional increments (proportional to the size of the treebanks) affects the
comparison metric. We modify a bit the methodology for the study of the metric in this
case. We first generate the data for the experiment in the following manner:

1. Let the ordered set of different genres in fi-tdt treebank be represented as X =
{wiki, grammar-examples, legal, news}, and individual genre be represented by xi

such that ∀i, xi ∈ X.

2. Split the original genres in fi-tdt treebank.

3. For each split (one split contains data from one genre), we downsample it to the
sentence counts as in Table 4.9. We refer to the downsampled split containing genre
xi by Txi

. We further split all Txi
into 1:1 ratio to achieve Txi

-test and Txi
-train

splits.

Genre Original Size Downsampled Size
wiki 2269 1800
grammar-examples 2002 900
news 1120 600
legal 1082 450

Table 4.9: Downsampling Genre-wise Data for fi-tdt Treebank

4. For i ∈ {1, 2, 3, 4}, we start combining different Txj
-train and Txj

-test splits in the
following manner:

(a) train{i} contains instances from Txj
-train splits such that j ∈ {1, ..., i}.

(b) test{i} contains instances from Txj
-test splits such that j ∈ {1, ..., i}.

(c) | train{i} | = | test{i} | = | fi_ftb-train | = | fi_ftb-test | = 1800
∀i ∈ {1, 2, 3, 4}

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 29/77

Essentially, i in train{i} or test{i} refers to the number of genres contained. We can
summarize the distribution of instances per genre in either of test{i} or train{i} splits as
in Table 4.10.

T Gi |T |
train1 900 900
train2 450 900
train3 300 900
train4 225 900
test1 900 900
test2 450 900
test3 300 900
test4 225 900

Table 4.10: Data Split of fi-tdt for studying effect of Genre Distribution

For studying the variability of LAS scores, we train the data on each train split, and
test the trained parser on all the test splits. Note that we do not need to ascertain for the
size difference of the treebanks, since we made sure that remains as the case. We define
the workflow for the experiment as follows:

1. For all train splits, do:

(a) Train a UDPipe Parser on the split, with the default arguments being passed
to the parser.

(b) Get LAS scores of the trained parser on all the test splits.

2. Report the computed LAS scores.

Instead of reporting confusion matrices for the experiment, it makes more sense to
represent the data graphically in a combined format for all the trained parsers. The
resulting graph can be seen in Figure 4.2. We define ∆G as a metric first, and then point
out some observations from the graph before trying to deduce an upper bound on θLAS

scores.

Definition 6. We define ∆G as the difference in number of genres in training and testing
data. Mathematically, it can be expressed as
Gtrain = The number of genres present in training data
Gtest = The number of genres present in testing data

∆G = Gtrain −Gtest (4.2)
We use |∆G| to refer to the absolute difference in genre counts.

The following observations can be made from Figure 4.2:

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 30/77

Figure 4.2: LAS Scores for Genre Optimization

1. The lesser the Gtrain value, the more drastic is the effect of addition/removal of genre.

2. The effect of removing a genre is more detrimental to the parser performance than
when a genre is added.

3. As more genres are added (∆G > 0), the parser performance is not significantly
affected.

4. As more genres are removed (∆G < 0), the parser performance is affected signifi-
cantly.

Definition 7. Observing the points noted above, and the graphical data, we can safely
bound θLAS by a metric θ1,genre. The metric is defined as follows:

θLAS ≤ θ1,genre =

2 for ∆G ≤ 0⌊
∆G

2

⌋
+ 2 for ∆G > 0

(4.3)

Since the addition of genres was not seen to have affected the LAS scores by more than
an absolute value of 2%, we keep it that way for ∆G ≤ 0. The added factor in case of a
negative ∆G value is to account for the fall of parsing quality, taken with an upper limit.

Like we mentioned earlier, the effects of genre addition/removal are more detrimental
when Gtrain value is lower. This can be attributed to the fact that in case of decreased count
of genres, the parser is not able to learn the genre-independent features of the language.
In case of multiple genres, the parser relies less on genre-specific data, and learns genre-
independent data better and thus the addition/removal of genres doesn’t impact the LAS
scores to a detrimental degree.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 31/77

4.2.3 Other Factors
We took into account the two major factors that cause a dip in parser performance. How-
ever, there are a few other factors that also affect the parser performance. We discuss some
of those factors in this subsection, without performing any experiments on them. Thus,
we do not account for these features in our definition of harmony of treebanks, as we argue
that these features should be corrected in treebanks (wherever necessary, and possible),
rather than being accounted for.

We do not account anywhere for genre-specific vocabulary in any of the cases, since
Alonso and Zeman [2016] and Droganova et al. [2018] prove in their experiments that LAS
scores are not affected by genre/topic-specific vocabulary.

Very Long Sentences

We define very long sentences as the sentences with more than 25 tokens. As the sentence
length increases, the distance of the nodes from the root of the sentence also increases.
Collins [1996] showed how the distance between a token and the sentence root affects
parser performance for syntactic trees. We can safely extrapolate on that information to
extend it to the case of dependency parsing as well.

As the number of very long sentences increase in the treebank, the parser performance
on the individual sentences decreases, and therefore the total score on the entire treebank
as well. While it might not always be possible to get rid of such very long sentences from
the treebank, care should be taken to keep the count of such sentences as minimal as
possible, or a separate parser could be trained on such sentences separately.

Non-Projective Structures

We discuss non-projective structures later in the document in Chapter 7. However, it is
worth mentioning at this point that the presence of non-projective structures has been
known to affect the parsing quality. The greater the number of non-projective structures,
the greater the difference in the parser performance. Minimizing the number of non-
projective structures in the treebanks is a definite way to reduce the degree by which the
treebanks differ.

Differences in Annotation Strategies

In different treebanks from the same language, there might not be agreements in the
annotation scheme. As Droganova et al. [2018] note, the difference in annotation of бы
(by; would) in ru-SynTagRus and ru-Taiga as an auxillary in the different treebanks causes
the parser trained on ru-SynTagRus to be able to predict only 5% of functional relations
in ru-Taiga. Other annotation inconsistencies, like those of tokenisation of multi-word
entities (MWEs), parataxis, SYM vs PUNCT, etc. also cause a dip in parser performance.
Such inconsistencies are often a result of individual team’s decision on annotation strategies
differing from each other.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 32/77

A correction on this aspect requires a more coherent dialogue between the different
teams responsible for development of different treebanks, and should be encouraged. While
it might not always be possible to catch these differences by an automatic tool also be-
cause we need to identify the areas where the annotation might be inconsistent between
treebanks; the concept of variation nuclei [Boyd et al., 2008] can be used to some extent.

Other Incorrigible Factors

Apart from the above mentioned factors, the treebanks on the same language can also
be influenced by the regional differences in the language. Consider the case of en, and
with reference to the difference in the spelling distinctions between American English and
British English. In case of a lexicalized parsing scenario, the differences in spelling can
make differences on how the parser reacts to different tokens. Another notable example is
with respect to Spanish spoken in Spain, and the variation(s) of it with respect to Spanish
as spoken in Latin America.

Also there can be differences in the source of the treebank data. Consider the example
of ru-Taiga treebank. The treebank was meant to capture the nuances of the online
communication in ru, and thus incorporates many features of the online expression of the
language, including but not limited to non-standard orthography of tokens, difference in
casing from the formal standards, topic hashtags. Such associations are almost always
parsed differently, and the parser is almost guaranteed to perform sub-optimally when
trained/tested on such data, and tested/trained on a treebank not exhibiting such features.

4.2.4 Brief Discussion on θ1 metric
While θ1 metric compares the two treebanks to identify the problems in relation to each
other, computing LAS scores of a treebank on itself can be considered as a reliable measure
as well. Consider the case of ko-GSD in Table 4.2. A LAS of around 63% indicates either
of two things:

1. The parser is not able to learn the features of the language, and we should try a
different parser.

2. The annotation scheme within the treebank is not uniform.
We can check for the first case by checking with the multiple architectures of parsers for
example. However, in the second case, all the parsers would yield lower scores than normal
for the treebank. This was also one of the intents in reporting the scores in Table 4.2 in
confusion matrices, and not reporting on simply the difference of LAS scores.

The architecture of a parser used for calculating θ1 metric also would essentially change
the variation of the scores, based on genres or on size. For example, the size-based disparity
scores are in line with Velldal et al. [2017] where they report the similar patterns with
respect to size variations. It might be an interesting study to extend the study based on
this to different architectures and study the variation of scores in cases of genre-distribution
as well as size-disparity.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 33/77

4.3 Tuning Parameter θ2

We briefly discussed on the metric KLcpos3 in Section 2.1. In this section, we shall try to
optimize θ2 value, given θP OS values for different treebanks as given in Table 4.11, with the
scores listed as percentage of 1 (example- if the absolute value is 0.005, it will be reported
as 0.5 since 0.5% of 1 = 0.005).

es AnCora GSD
AnCora - 0.683
GSD 0.683 -

et EDT EWT
EDT - 1.082
EWT 1.082 -

fi FTB TDT
FTB - 0.511
TDT 0.511 -

gl CTG TreeGal
CTG - 1.902
TreeGal 1.902 -

grc Perseus PROIEL
Perseus - 5.423
PROIEL 5.423 -

ko GSD Kaist
GSD - 4.722
Kaist 4.722 -

lt ALKSNIS HSE
ALKSNIS - 0.795
HSE 0.795 -

nl Alpino LassySmall
Alpino - 0.818
LassySmall 0.818 -

pl LFG PDB
LFG - 1.38
PDB 1.38 -

pt Bosque GSD
Bosque - 0.066
GSD 0.066 -

ro Nonstandard RRT
Nonstandard - 0.746
RRT 0.746 -

sl SSJ SST
SSJ - 2.607
SST 2.607 -

sv LinES Talbanken
LinES - 0.413
Talbanken 0.413 -

fr GSD ParTUT Sequoia
GSD - 1.159 0.587
ParTUT 1.159 - 1.19
Sequoia 0.587 1.19 -

la ITTB Perseus PROIEL
ITTB - 2.979 4.7
Perseus 2.979 - 10.874
PROIEL 4.7 10.874 -

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 34/77

ru GSD SynTagRus Taiga
GSD - 1.837 2.976
SynTagRus 1.837 - 1.009
Taiga 2.976 1.009 -

no Bokmaal Nynorsk NynorskLIA
Bokmaal - 0.129 1.199
Nynorsk 0.129 - 1.099
NynorskLIA 1.199 1.099 -

cs CAC CLTT FicTree PDT
CAC - 4.553 0.844 0.851
CLTT 4.553 - 6.024 5.358
FicTree 0.844 6.024 - 0.493
PDT 0.851 5.358 0.493 -

en EWT GUM LinES ParTUT
EWT - 0.581 1.483 1.947
GUM 0.581 - 0.817 1.466
LinES 1.483 0.817 - 0.394
ParTUT 1.947 1.466 0.394 -

it ISDT ParTUT PoSTWITA VIT
ISDT - 0.398 2.29 0.001
ParTUT 0.398 - 4.732 0.429
PoSTWITA 2.29 4.732 - 2.287
VIT 0.001 0.429 2.287 -

Table 4.11: θP OS Scores for Different Treebanks per language, UDv2.4

4.3.1 Optimization for Size Disparity
To properly account for size disparities, we need to keep in mind two aspects, as listed in
Section 4.2.1. We use the same dataset as we did while accounting for the size disparities
for θ1 parameter. However, we modify the workflow for the experiments as follows:

1. Split the data into sizes in the range of {5, 10, ..., 95} % of the original data size.

2. On the split data,

(a) Compute θP OS of the split data with the original data.
(b) Compute θP OS of the split data with news section of hi-pud data.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 35/77

(c) Train a UDPipe Model on each split with the dev data given as heldout, and
report the UPOS Tag Accuracy Score (in %) on the two sets of testing data
(hi-hdtb and news section of hi-pud), in a graphical format.

3. Report θP OS scores for the different splits in a graphical format.

The results for the Accuracy of the Tagger Model(s) can be as seen in Figure 4.3. As
can be seen, the Tag Accuracy Score increases as the split size increases, except for some
minor irregularities, which can be considered as within the scope of error. The above
inference holds true in the case of both sets of testing data. It is also interesting to note
that the rate of increase in Tag Accuracy is almost similar in both cases, thus making the
two graphs almost parallel to each other.

Figure 4.3: Tagging Accuracy Scores for size disparity

The results of difference in KLcpos3 scores, also referred to as θP OS scores, can be seen
in Figure 4.4, where the constant line in the graph denotes θP OS score for the two sets of
test data. This figure requires a more thorough description than the last one, but we can
summarize a few points based on a first glance:

1. In case of hi-pud news data, as the size of split increases, the θP OS scores also starts
increasing. Alternatively phrasing, even when the calculations are done on relative
frequencies (cf. Definition 1), the θP OS score starts diverging as the frequency counts
increase.

2. The lowest score in case of θP OS for hi-pud news section is almost the same as the
score for when the data is compared against hi-hdtb test set.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 36/77

3. In case of hi-hdtb test data, initially we observe a dip in the score, followed by a
increase, and then the decreasing value again. Although expected to be monotonously
increasing/decreasing, the behaviour marks the presence of some trigrams that make
the scores diverge, before the sizable presence of the trigrams in question start causing
the scores to converge.

Figure 4.4: θP OS scores for size disparity

It is interesting to note that in Figure 4.3, the difference in tagging performance on the
two test sets of data was almost always constant. This should have been reflected when
calculating θP OS scores, but the graphs for the scores are diverging in nature, as can be
seen in Figure 4.4.

With respect to the given data, the following points can be concluded for θP OS metric,
for the size-based disparity:

1. If the data comes from same sources (and is in same genre), we expect the metric to
be less than 0.01, even if the size difference is 20x.

2. If the data comes from different sources (more likely case, owing to how different
treebanks come from different sources), the metric score diverges until a certain
point, until saturating (cf. Figure 4.4 for hi-pud data).

In our experiment, a size difference of 26x (news data of hi-pud, and train set of hi-
hdtb, in number of sentences) caused the metric to be still less than 2.6 (10% of 26). In
general, it should be safe to define the condition for θ2 based on size, as follows:

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 37/77

Definition 8. Given two treebanks A, B such that the size difference between the two
is α, and the parameter θP OS, expressed as percentage of 1. The optimal value of the
parameter θP OS can be upper bounded by value of θ2,size as follows.

The value θ2,size can be limited between 0, and the larger value of 10% of α, or 1,
subjected to a maximum value of 7.
Mathematically,

size(A) > size(B) =⇒ α = size(A)
size(B)

=⇒ θP OS ≤ θ2,size = min(max(1,
α

10
), 7) (4.4)

The definition above bounds the value of θ2 parameter, for size disparity. Consider the
following example for two treebanks, which contain the instances from same genre:

Example 7. We are given two treebanks, containing the same genre of data, differing in the
size. Let us assume the two given parameters as:

α = 25
θP OS (absolute) = 0.026 =⇒ θP OS = 2.6% of 1

We can compute θ2,size as follows:

θ2,size = min(max(1,
25
10

), 7) = min(max(1, 2.5), 7) = min(2.5, 7) = 2.5 < θP OS

Thus, the given treebanks in this instance would not be harmonious with respect to
parameter θ2,size.

There is a specific reason for the choice of limiting the θ2,size value to 7. In most cases,
the treebanks are split in train, dev and test in the proportion of 8:1:1. Considering a
treebank that does not contain a dev set, the split would be in ratio of 9:1 for train, and
test data. In the formula for KLcpos3 , the choice for the base of the log is not important,
affecting only the absolute values. However, if we use base 2, it makes it easier for the
difference to be calculated in terms of number of bits. Noticing that log2 90 ≈ 6.49, we
include the case of unseen trigram pairs on either side, before taking a ceiling of this value,
to mark the upper limit at 7.

4.3.2 Optimization for Genre Distribution
For optimization of the genre distribution with respect to POS scores, we used the same
dataset as in Section 4.2.2. We computed KLcpos3 score between all the train splits, all the
test splits, as well as between every possible pair of train and test split. The results for
the computed scores can be seen in form of confusion matrices in Table 4.12.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 38/77

test1 test2 test3 test4
test1 - 0.644 0.145 0.306
test2 0.644 - 0.496 0.258
test3 0.145 0.496 - 0.159
test4 0.306 0.258 0.159 -

train1 train2 train3 train4
train1 - 0.75 0.272 0.421
train2 0.75 - 0.434 0.298
train3 0.272 0.434 - 0.158
train4 0.421 0.298 0.158 -

train1 train2 train3 train4
test1 0.384 0.381 0.079 0.067
test2 1.036 0.242 0.745 0.612
test3 0.552 0.183 0.312 0.148
test4 0.672 0.037 0.433 0.288

Table 4.12: KLcpos3 Scores for Genre Optimization

We can notice from the table that except for the score for train1 and test2 in the last
part of the table, all the values are at most 1. This was a peculiar case, and when the
experiment was retried with other different splits, the average scores were found to be less
than 1 in this case as well.

We can very well say that addition/removal of genre does not affect POS distribution
of the data. As such, we don’t account for genre disparity in case of θP OS scores.

4.4 Combining Optimized Values; Further Discussion
In our experiments, we optimized the two parameters θ1 and θ2 based on size and genre
variations, by considering only one at a time. This is not always possible since the premise
of the genre-distribution based study is the isolation of individual genres. Also, while
some genres are extremely different (like wiki data and internet slang), some others are
not very much so (like wikipedia and nonfiction). Realistically, we would need to factor
genre-distribution and size-disparity together. In the sense, there can be different number
of genres, and with each genre having a different size in the treebanks being compared.
In such a case, the metric would need to be compared for size per genre, on basis of
genre-distribution and finally, the overall size of the treebank.

While the metric reported in this experiment is far from perfect, it gives something to
start comparing the data in different treebanks. We discussed the metric for calculating
POS distributions, as well as LAS scores. It is not possible to identify and localize the
source of errors using the metric, but it narrows the search space on where to look for. This,
of course, only holds true if the genre distribution can be identified, and size composition
of different genres identified. It would be an interesting study for future to learn if the
effects of genre addition/removal are uniform across all genres, or are certain genre pairs
more accommodating to each other (in the sense of less variance in LAS scores between
them).

__
Language Analysis and Processing

5. Experiment 2: conj_head
As discussed in Section 2.2.1, the problem identified as conj_head refers to the head
identification error. This error is characterized by the coordinating conjunction being
linked to the previous conjunct, rather than by the next conjunct. The latter of the two is
as per UDv2 guidelines. We shall treat this problem in this section, with a glance through
some of the observations on the problem in Section 5.1, allowing us to define our effective
dataset in Section 5.2. We elaborate on our proposed solution to the problem, and the
explanation of the algorithm used in the experiment in Section 5.3 and 5.4 respectively.
We finally evaluate our experiment in Section 5.5.

5.1 Observations Pertaining to the Problem State-
ment

The problem of identifying the coordinating conjunction, and separating it from subordi-
nating conjunction is a problem in itself, with the boundaries between the two sometimes
not being explicit. Nonetheless, in our treatment of the problem, we shall identify coordi-
nating conjunctions with their UPOS tag (CCONJ), and limiting ourselves to a particular
deprel, cc. Notice that this distinction is necessary, and needs to be marked explicitly ow-
ing to the discussion of problem related to multiple deprels being associated to the UPOS
tag (cf. Section 7.2). We take a look at the different issues associated with the problem
that makes it a difficult one to solve in following subsections.

5.1.1 Direction of Dependency
One of the intuitive methods of approaching the problem at hand is to isolate the prob-
lematic token in a tree, and then check if the dependency edge to this token is in the
correct direction. However, the identification of the correct direction can be non-trivial if
worked in a language-independent manner. Consider the case of sa, and how it differs from
en, as in Example 8. In en, the coordinating conjunction occurs in between the different
conjuncts. In the given example for sa, the conjunction is linked with the last conjunct in
a form that is typical of the language.

Example 8.
Text (sa): तस्य तर्यः पुतर्ाः परमदमुेर्धसः वसुशिक्ः उगर्शिक्ः अनन्तशिक्श्च इित बभूवुः ।
Translit: tasya trayaḥ putrāḥ paramadurmedhasaḥ vasuśaktiḥ ugraśaktiḥ anantaśaktiśca
iti babhūvuḥ .
Lit.: His three sons extremely-stupid Vasushakti Ugrashakti Anantashakti-and known-
by-these-names there-were .
Translated: There were his three extremely stupid sons, called Vasushakti, Ugrashakti,
and Anantashakti.

39

Annotation Inconsistencies in Universal Dependencies 40/77

Note how in the data, the coordinating conjunction च (ca; and) is attached to the last
conjunct, unlike in English where the conjunction (and) exists as a token on its own. It
is also worth pointing out that the token referred to above is not the only coordinating
conjunction in the language, with other conjunctions may/may not be attached to the last
conjunct.

We have not yet talked about the case of RTL languages. Consider the case of Hebrew,
for example. Written in right-to-left manner, the token for coordinating conjunction is
added on to the next word as a prefix. However, this conjunction token is not the only
prefix used in the language, and a singular word can have multiple prefixes. It would still
have been possible to isolate the prefix if the associated character were reserved only for
prefixes of such nature. However, the character in question can also occur as the first
character in a word, without implying conjunction. The same process is elaborated in
Example 9. The associated character is ו (w). The rules for listing the transliteration,
as well as the translation are the same as defined for inline usage of a word from RTL
language.
Example 9.
Text (he): והכלב ;התפוח ;ורד נהנתי ובגדול בטיול הייתי
Translit: hṯp̄wḥ whḵlḇ; wrḏd; hṯ ḇṭwl wḇḡḏwl nhnṯ;
Lit.: the-apple and-the-dog; Rose; I-was on-a-trip and-in-large I-enjoyed;
Translated: The apple and the dog; Rose; I was on a trip and in general I liked it;

Although the problem may seem complex, it is not so. Effectively, we can consider
the cases of sa and he as similar, differing only in aspect of prefix, or as suffix. Once we
are able to identify the relevant affix, the problem can be simplified to that of direction
problem. Notice that the identification of the relevant affix is a tokenisation problem, which
is outside the scope of this research. In our treatment of the languages, we assume (and
are given in CONLL-U representation) the syntactic tokens split into the smaller syntactic
words.

5.1.2 Asyndetic Coordination
Asyndetic coordination refers to the case where the coordinating conjunction is omitted. A
typical example of this is listed below, where comma (or some other punctuation) delimits
the different tokens, and acts as conjunction marker. While this may be frequent in some
languages, the alternative approach of using a conjunction between every conjunct is also
possible.
Example 10.
Asyndetic: A, B, and C.
Notice the lack of a conjunction between A and B.
Non-Asyndetic: A and B and C.
The conjunction (and) is present in between every conjunct.

In either of the case, we need to restrict our focus on the present coordinating con-
junction, and make sure the conjunction is linked to the next conjunct. The problem here

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 41/77

remains the same, making sure the conjunction is attached in the right direction.

5.1.3 Nested Conjunctions
It can be argued that nested conjunctions can not be handled the same way as the other
conjunctions in the scope of the problem. We use the examples as given in UD guidelines
on the problem1, without adding conjunctions in between the tokens.
Example 11.

1. A, B, C

2. (A, B), C

3. A, (B, C)
Without using the enhanced dependencies, the trees for the first two examples cannot

be distinguished in the trees. Only the last example can be distinguished from the first
two. However, if there are conjunctions present, all the three cases are distinguishable from
each other.

It is important to note that we work with the hypothesis that the conjunction is located
always close to the conjuncts. This is intuitive, but in the event of this being not the case,
the conjunction will introduce a non-projectivity into the sentence. We do not want to
introduce non-projectivities in the sentence where it was not already, although it might
happen that we end up removing some of the non-projectivities in the process.

5.1.4 Conjunction Sandwich
We have so far discussed only the cases where the direction of dependency is wrong. Such
cases are easily detectable. However, there is one more case which is significantly more
difficult to determine. Consider the example of a subtree in Figure 5.1. Notice that token
‘B’ is the conjunction, while ‘A’, and ‘C’ are conjuncts. The conjunction ‘B’ should be
correctly linked to ‘C’. The node ‘D’ refers to the shared parent of nodes ‘A’, ‘B’, ‘C’, or
the root of the sentence, as the case might be.

In the above figure, we can observe that the direction of the association of the conjunc-
tion is correct. However, that does not mean that it is linked to the correct head. This
problem can be present in the default annotation, or might be introduced after the tree has
been corrected for the misdirected dependency. We refer to such cases as a Conjunction
Sandwich, since the conjunction is sandwich-ed in between the conjuncts, with no way of
knowing the conjuncts. In the figure, we explicitly mention that the surrounding tokens
(or subtree heads) are conjuncts. However, it is fair to assume that neither of the two
would be labelled by the deprel, and that makes such cases even harder to detect. In our
experiments, we tried to detect such cases, without any success. We therefore do not deal
with such cases in this research.

1https://universaldependencies.org/u/dep/all.html#nested-coordination

__
Language Analysis and Processing

https://universaldependencies.org/u/dep/all.html#nested-coordination

Annotation Inconsistencies in Universal Dependencies 42/77

Figure 5.1: Possible Case of Conjunction Sandwich

5.2 Dataset Definition
The experiment was initially started on UDv2.3, but owing to the release of UDv2.4 in May
2019, the experiment was transported entirely to UDv2.4. It is worth noting that there
were far more cases of this problem being identified in UDv2.3, rather than in UDv2.4.
Nonetheless, there exist significant cases of the problem in UDv2.4 as well.

We limit our treatment of the problem to af, and ar. The treebank for working with
sa is too small, and so we discard it from the dataset, owing to the smaller size of the
treebank. The other languages are not considered since the number of erroneous instances
with respect to attachment in wrong direction is too small. Note that we don’t conduct
any experiments on agglutinative languages, owing to the complexity of the resulting ag-
glutinated token. Again, as in case of sa and he, it should be possible however to do so
once the agglutinates have been identified, and isolated.

With respect to treebanks, ar has 2 different treebanks, not including ar-PUD.We focus
our attention on ar-PADT treebank here because the other treebank for the language is
delexicalised, and requires a license in order to obtain the textual data.

5.3 Experimental Setup
We start by identifying the cases where the direction of dependency is inverted. Once such
cases have been identified, we start by flipping the direction of attachment, towards the
most likely conjunct, as defined in previous section.

While ar is a RTL language, it is written in CONLL-U format in LTR format. As such,
given that af is already an LTR language, the algorithm for identification, and correction
of the direction of attached dependency is the same for both languages. Table 5.1 lists
the counts of instances identified as attached in the wrong direction, in comparison to the
total number of instances.

We limit our treatment of the problem to the case where we do not need to change
the level in the tree (where the node is incorrectly attached) by more than 1. In essence,
the wrong attachment of the conjunction can be corrected by finding a conjunct that is in
the same level as the wrong conjunct, or is within the subtree of this wrong conjunct. In
very rare cases, it might be necessary to attach the conjunction to the parent of the wrong

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 43/77

Language Misdirected Total Percentage
af 1 829 1 832 99.836
ar 1 411 13 855 10.184

Table 5.1: Counts of Coordinating Conjunctions attached in wrong direction

conjunct it is attached to. If none of these is valid, we hypothesize that the annotation for
the sentence was faulty, and thus it requires manual inspection for it to be corrected.

With respect to the above statement about the change of level being restricted to a
maximal value of 1, there are 3 trees possible, as shown in Figures 5.2, and 5.3. The tokens
follow the same conventions as discussed in previous subsection on Conjunction Sandwich.

Figure 5.2: Possible Wrong Attachments of a Coordinating Conjunction: Both conjuncts
at same level

Notice that while the 3 cases are separate, there is no deterministic way of knowing
what case an instance might refer to. As such, we handle all the 3 cases in decreasing
order of priority, i.e. we try to handle the case as in Figure 5.2 first, failing which we try
to solve it with respect to the case as in Figure 5.3a, and eventually as in Figure 5.3b. If
a particular instance is still not corrected after the consideration of the last case, we leave
it untouched. We describe in detail the algorithm for the task in the next subsection.

5.4 Algorithm
We start with defining some wrapper functions in Algorithm 1 and 2. While the first one
checks for the coordinating conjunctions that are attached in wrong direction, the second
one tries to change the parent of the given node x to a new parent z. In case the new
association would be non-projective, the function rolls back to the previous parent. If the
projectivity is preserved, the function returns a true value, which allows us to terminate
the function whenever the function call is made inside another function. The function
also checks against making the node as attached directly to the technical root of the tree,
thereby making sure there is just one root node at any instance.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 44/77

(a) Wrong conjunct at higher level

(b) Correct conjunct at higher level

Figure 5.3: Possible Wrong Attachments of a Coordinating Conjunction

Algorithm 1 misdirectedDependency()
Input: Node x

1: if x.upos == “CCONJ” and x.udeprel == “cc” and x.parent.id < x.id then
2: return true
3: end if
4: return false

Having defined our wrapper functions, we start by trying to attach the conjunction at
the same level to other siblings in Algorithm 3. We first check to see if there is a single
remaining sibling that does not have a POS tag of X, PUNCT, or SYM since we want to avoid
the linking of the conjunction to these POS tags. We do these checks in lines 4-15, and in
case of a single sibling being available, attach the node therein, and return a true value.

In case the condition is not met, we try to find the nearest sibling that has the deprel
as conj, and try attaching the conjunction there. Again, this condition might fail. As a
last resort, we try to find indirect dependents of the conjunct the conjunction is attached
to, and link the conjunction there. We limit the set of indirect dependents by restricting
the deprels to obl, xcomp, nmod, and nsubj.

Notice how we decide on whether or not the algorithm terminates by continuously
checking the condition of projectivity, and returning a value from the function only if the
condition of projectivity with respect to the new parent is maintained. It is also important
to note that we always limit our search for a suitable candidate to cases where the candidate
occurs later than the conjunction we are trying to rehang.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 45/77

Algorithm 2 setParent()
Input: Node x, Original Parent y, New Parent Candidate z

1: if x will be attached non-projectively to z or z is ROOT then
2: x.parent← y
3: return false
4: else
5: x.parent← z
6: return true
7: end if

Algorithm 3 attachToSibling()
Input: node such that misdirectedDependency(node) == true

1: {Try to attach to a sibling node}
2: count← 0
3: origParent← node.parent
4: for all siblings of node do
5: if siblings.upos not in [“X”, “PUNCT”, “SY M”] then
6: TargetSibling ← siblings
7: count← count + 1
8: end if
9: end for

10: if count == 1 then
11: {Just one sibling, attach to this sibling}
12: if setParent(node, origParent, TargetSibling) then
13: return true
14: end if
15: end if
16: {More than one siblings, narrow search by deprels}
17: for sibling of node do
18: if sibling.udeprel == “conj” and sibling.id > node.id then
19: if setParent(node, origParent, sibling) then
20: return true
21: end if
22: end if
23: end for
24: for sibling of node do
25: if sibling.udeprel in [“obl”, “xcomp”, “nmod”, “nsubj”] and node.id < sibling.id

then
26: if setParent(node, origParent, sibling) then
27: return true
28: end if
29: end if
30: end for
31: return false__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 46/77

If there is no suitable candidate in the same level as the current level of the conjunction,
we try to ascend one level and try to attach the node to the next aunt (parent’s sibling)
in Algorithm 4. We do not set any checks with respect to deprels, but still keep a check
on the condition of projectivity and the node order.

Algorithm 4 attachToAunt()
Input: node such that misdirectedDependency(node) == true

1: {Try to attach to the first relevant aunt node}
2: origParent← node.parent
3: aunts = []
4: for sibling of origParent do
5: if sibling.id > node.id then
6: aunts.append(sibling)
7: end if
8: end for
9: if aunts is not empty then

10: setParent(node, origParent, aunts[0])
11: end if
12: return false

In the event that a suitable candidate is not found, a false value is returned. This
implies that our search for a suitable candidate has failed even after trying to ascend one
level. As last resort, we try to attach the conjunction to the grandparent, while preserving
projectivity in Algorithm 5.

Algorithm 5 attachToGrandparent()
Input: node such that misdirectedDependency(node) == true

1: {Try to attach to the grandparent node}
2: origParent← node.parent
3: grandparent← origParent.parent
4: if setParent(node, origParent, grandparent) then
5: return true
6: end if
7: return false

Having established all the possible cases, we can wrap them all in a nice function that
takes care of all the cases, in priority order. The final algorithm is as given below:

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 47/77

Algorithm 6 fix_conj_head()
Input: node such that misdirectedDependency(node) == true

1: if attachToSibling(node) then
2: return
3: else if attachToAunt(node) then
4: return
5: else if attachToGrandparent(node) then
6: return
7: else
8: Do Nothing
9: end if

5.5 Evaluation and Results
We implement the algorithm in form of a Udapi-python block2 [Popel et al., 2017]. The
runtime of the block for the data is as mentioned in Table 5.2, as run on Ubuntu 18.04
(64-bit) on a 4-core Intel i5-6300 HQ processor.

Language RunTime (in ms)
af 68
ar 162

Table 5.2: Runtime for Algorithm with Udapy Python Block

After applying the algorithm on the data, there were 17 (0.92 % of identified misdirected
instances), and 359 (25.44 % of identified misdirected instances) cases in af and ar data
respectively, which could not be handled. With respect to the unhandled cases in both
the datasets, the algorithm is designed to work in a way that it does not over-generate.
As such, all the cases where the algorithm would have over-generated were not handled by
the algorithm.

We hypothesized earlier that if the rehanging of the node requires a change in more
than one level (of the level of wrong conjunct), it is likely to be an annotation error that
needs manual correction. We found that to be true for more than 50% of the cases in either
treebank with respect to all the unhandled cases.

For the evaluation, we randomly sample 100 instances identified with wrong dependen-
cies before the correction from each treebank, and report the score on the counts of wrong
dependencies before, and after the correction algorithm. The scores can be seen in Table
5.3.

With the defined algorithm in previous subsection, we were able to correct around a
significant amount of flagged error cases, just by identifying the direction of dependency.

2Code available at https://github.com/Akshayanti/conj_head.git

__
Language Analysis and Processing

https://github.com/Akshayanti/conj_head.git

Annotation Inconsistencies in Universal Dependencies 48/77

Language Corrected Instances
af 95
ar 97

Table 5.3: Results of Experiment on conj_head, evaluated with 100 random samples

Even with a consideration of 5% error, the algorithm is able to fix the dependencies effec-
tively.

The algorithm was further tested on grc-PROIEL and grc-Perseus data, and the UD-
Pipe parsers trained on the corrected data. The LAS scores when the parsers were tested
on itself and on the other treebank, are as shown in Table below.

grc PROIEL Perseus
PROIEL 75.84 32.02
Perseus 43.23 70.54

Table 5.4: Before correction

grc PROIEL Perseus
PROIEL 77.86 32.14
Perseus 43.55 70.70

Table 5.5: After correction

Although there is not a significant change in LAS scores before and after the correction,
the general increase in the scores can be attributed to the increased uniformity of the
directions of association.

__
Language Analysis and Processing

6. Negative Experiment: AUX vs.
VERB
We discussed in brief the problem of separating instances labelled AUX and VERB in Section
2.3.3 earlier. We shall treat this problem in this chapter, with a glance through some of
the observations on the problem in Section 6.1, followed by the definition of the working
dataset in Section 6.2. We elaborate on the proposed solution to the problem, and the
results of the experiment in Section 6.3 and 6.4 respectively. We finally conclude this
chapter with a discussion of the results in 6.5.

6.1 Observations Pertaining to the Problem State-
ment

According to the definition in UD1, AUX is used as a common POS tag for verbal auxiliaries,
as well as non-verbal TAME markers. The class of copulas are also included in this list.

This definition of auxiliaries is a bit different from Shopen [2007] which separates the
two classes of auxiliaries and copulas in different categories. The work also points out
the correlation between the position of an inflected auxiliary in relation to the verb, and
other word properties of the language, as first pointed by Greenberg [1963]. In his work,
Greenberg notes that the position of an inflected auxiliary in relation to the verb is generally
the same as the position of verb in relation to an object. It is important to note that
this generalization only holds for the inflected auxiliaries, and thus languages where the
auxiliaries are not inflected are automatically ruled out from the consideration. Shopen
points out the well-known exception to this generalization in case of verb-second languages
like those of German.

While the generalization made by Greenberg is a very good marker for possible identifi-
cation of inflected auxiliaries, the requirement of identification of auxiliaries in noninflected
form still remains as a problem. This problem can however, be mitigated in part by the
usage of the list of tokens identified as auxiliary in a given language, as was started in
UDv2.4 with the help of a validator (cf. Level 5 checks in validate.py2 file). It must also
be pointed out that since Greenberg did not extend this generalization to SVO languages,
the generalization only holds for languages with VSO and SOV dominant word-order lan-
guages. Combining that with verb-second languages, the generalization can not be used
globally across all the languages.

When the copulas are included in the definition of AUX, the already difficult problem
of separating AUX and VERB becomes even harder. In many languages, auxiliaries are a
subset of verbs, with respect to specific usages. In other words, the same token can act as

1https://universaldependencies.org/u/pos/AUX_.html
2https://github.com/UniversalDependencies/tools

49

https://universaldependencies.org/u/pos/AUX_.html
https://github.com/UniversalDependencies/tools

Annotation Inconsistencies in Universal Dependencies 50/77

a verb or an auxiliary, depending upon the usage. The list of copula in many languages
is also a subset of verbs, called as copulative verbs. However, as Shopen notes, there are
cases of languages where the copula are not verbal in nature. The function of a copula
can be realized by other means as well. The most common of these, viz. juxtaposition
(example language- Ilocano), and use of predicators (example language- bm) are listed in
the work, where they may be combined with existing copulative verbs in the grammar of
the language.

In essence, while the class AUX in UD includes the copulative verbs, predicators, and
other non-verbal TAME markers, the class VERB is composed of open class categories of
verbs.

6.2 Dataset Definition
This experiment was initially tried on UDv2.3, but failed terribly. With the release of
UDv2.4, this experiment was tried again, keeping the dataset treebank same, but changing
the neural network model architecture. In the current documentation, we will use hi-hdtb
treebank from UDv2.4.

There are a few reasons for the choice of the language for the experiment. In hi, we
can more often than not draw a clear line of distinction between auxiliary as defined by
UD, and the verbs. While the auxiliaries undergo inflection, and also include predicators
and other TAME markers, they are restricted to a few tokens which rarely, if at all, are
used as independent verbs. The factors as listed above, combined with the author’s native
fluency in the language makes it an ideal candidate for this experiment.

6.3 Experiment
We approach the problem at hand as a classification problem, specifically as a Sequence
Labelling based NER problem. As part of this measure, we convert the data from the
entire hi data to a format that suits the task3.

There exist two tag formats for NER, namely IOB and IOBES. While IOB is composed
of 3 tags- Inside, Outside, Begin; the IOBES tagset extends the IOB tagset by adding End
and Singleton tags. The IOBES tagset helps with the better annotation of the data, as it
provides more information. For example, in IOB tagset, the singleton entities are labelled
with ‘B’ tag, without any following elements covered by ‘I’ tag. In IOBES, the tag ‘S’
is used to specify a single element being tagged. Similarly, the end of a sequence is not
marked explicitly by IOB tagset, but is done with ‘E’ tag in IOBES format.

To convert our data into the desired format, we use the following methodology. All the
instances marked as AUX are labelled as “S-aux”, and all the instances marked as VERB are
labelled as “S-verb”. The rest of the tokens are labelled with ‘O’ tag. We do not consider
contiguous tokens as a continuous chain, and thus not use either of ‘I’, ‘B’ or ‘E’ tags at

3Code available at https://github.com/Akshayanti/aux_verb.git

__
Language Analysis and Processing

https://github.com/Akshayanti/aux_verb.git

Annotation Inconsistencies in Universal Dependencies 51/77

all. This is also done so as to have better control over each token that the model learns to
tag, thereby increasing the granularity of the data, while keeping it simple.

For the task of NER, as well as POS Tagging, Flair embeddings [Akbik et al., 2018]
were the SOTA at the time of performing this experiment. The embeddings were shown to
outperform several models available at the time, across multiple NLP tasks, and therefore
were the natural choice for this experiment. However, there are several hyper-parameters
that can be tuned with respect to the models. We decided to tune the hyper-parameters
with their corresponding choices as listed in Table 6.1. The best choice for the different
hyper-parameters is also listed in the same table.

Hyper-Parameter Choices Tuned Value

Embeddings Stack1: Forward and Backward Flair Em-
bedding trained on hi-newswire Stack2

Stack2: Word Embedding for hi, Forward
and Backward Flair Embedding trained on
hi-newswire

Use CRF? True, False True
Use RNN? True, False True
RNN Layers 1, 2, 4 2
Size of Hidden Layer 32, 64, 128, 256 256
Dropout Uniform Distribution in [0.0, 0.5] 0.25
Learning Rate 0.05, 0.1, 0.15, 0.2, 0.25 0.1

Table 6.1: Hyper-Parameters for Neural Network

Since we are trying to correct the gold standard itself, we are very liable to run into a
cold start problem. To counter this problem, we perform a k-fold cross-validation on the
data, with k=10. We concatenate the different splits of the treebank (train, dev, test) and
then split the data into 10 folds, with test set in each fold disjoint with other test data in
other folds. We then proceed to convert each of those folds into the IOBES tagset as we
did with the unmodified data.

With the optimized parameters, we train models on each fold of the data. The trained
model instances are then used to predict the test set in each fold as well. The output of
the evaluation writes the predictions with the associated confidence in the predicted label.
We here identify the 6 kind of patterns as listed in Table 6.2.

Category Original Prediction
aux_TP S-aux S-aux
O_TP O O
verb_TP S-verb S-verb

aux-O O S-aux
S-aux O
Continued on next page

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 52/77

Category Original Prediction

aux-verb S-aux S-verb
S-verb S-aux

verb-O O S-verb
S-verb O

Table 6.2: Categories of Error Patterns

Since we also have confidence scores associated with each prediction, we focus on a
set of error patterns within certain bounds on the confidence scores. Figure 6.1 shows
the distribution of confidence scores for instances where the predicted label matches the
original label, with the associated confidence value lower than 0.80. For these categories,
we focus on the subset where the confidence score is lower than 0.67. The idea is that since
there are 3 categories, a prediction with a confidence lower than 2

3 is liable to be erroneous.
For the instances where there is a mismatch between the predicted label and the originally
annotated label, we focus on instances with the confidence in prediction higher than 0.995.
The idea in this case is that if the model is really sure about the prediction, the original
annotation might be erroneous, and is worth looking into.

Figure 6.1: Rug plot with Distribution of Predictions with low confidence score

Having identified instances within each category that have confidence scores within
the relevant bound, these instances were manually annotated to see if they were actually

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 53/77

mislabelled patterns or not. We can summarize the entire experiment in the form of
algorithm as defined in Algorithm 7.

Algorithm 7 Experiment to Identify Mislabelled AUX and VERB tags
Input: data← UDv2.4 treebank

1: Convert data.train, data.test and data.dev to IOBES format
2: Optimize Sequence Labelling NER model configurations for the data
3: model.config ← best sequence labelling NER model configuration
4: data.complete← data.train + data.dev + data.test
5: {The different splits of the data concatenated together}
6: iter.id← fold of data.complete, numbered as id
7: {Performed 10-fold cross-validation to split data.complete}
8: model← NER model with model.config configuration
9: for id in {1, ... , 10} do

10: model.id← model trained on iter.id.train data
11: model.id.test← Prediction of model.id on iter.id.test data
12: end for
13: identified.pure← Instances identified as True Positive across all model.id.test
14: {Confidence score ≤ 0.6700}
15: identified.cross ← Instances identified as False Positive or False Negative across all

model.id.test
16: {Confidence score ≥ 0.9950}
17: Manual Annotation of identified.pure and identified.cross

6.4 Results
The output of running the NER tagger on test data within each of the fold returns the
predictions of the model, and an associated confidence score value. Also, owing to multi-
class classification, the model performance is expressed in form of confusion metrics for
each class AUX, VERB along with the metrics like Precision, Recall, Accuracy, F1 Score.

The metrics corresponding to the best performing model on the original treebank is
listed in Table 6.3. When the models were trained on each of the folds, keeping the
architecture of the best model, there was no loss in performance of the trained models
(metric considered- micro averaged F1 score).

As mentioned in previous section, we focused on the instances of the tagged data with
confidence scores in particular bounds. Table 6.4 lists the number of instances that were
focused on in each category (as defined in Table 6.2). The table also lists the number of
instances that were identified as mislabelled, following the annotation procedure.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 54/77

Label Precision Recall Accuracy F1 Score
AUX 98.89 99.50 98.40 99.19
VERB 99.32 98.87 98.20 99.09

Averaging Accuracy F1 Score
Micro 98.29 99.14
Macro 98.30 99.14

Table 6.3: Metrics of Best Model trained over original hi data

Category Focused Mislabelled Percentage
aux_TP 83 3 3.61
O_TP 25 5 20.00

verb_TP 45 10 22.22
aux-O 10 9 90.00

aux-verb 42 23 54.76
verb-O 20 11 55.00

Overall 225 61 27.11

Table 6.4: Results of Manual Annotation

6.5 Discussion of the Results

Metric Count
Sentences 16 647
Words 351 704
Tagged AUX 26 030
Tagged VERB 33 753

Table 6.5: Statistics for hi data

Table 6.5 lists the counts of sentences and the number of AUX and VERB tags in the
entire hi-hdtb treebank. Of the total number of tags listed in either category, we are able
to focus on just 225 instances where we might be able to identify the problems. Even out of
those 225, the success ratio is less than 30%. While certain patterns are more reliable than
others (the case where predicted labels don’t match the annotated labels), the numbers
are not significant enough for the process to be automated.

__
Language Analysis and Processing

7. Future Work Recommendations
This chapter discusses in brief the other problems that have been recognised within the
scope of UD. None of these works mentioned in this chapter were undertaken in this study.
For future researchers interested in tackling more problems with respect to UD, this chapter
could be a good point of reference.

7.1 Ellipsis
The problem with annotation of Elliptical Structures is big enough to warrant a discussion
of its own in UD Annotation Guidelines1,2.

Droganova and Zeman [2017] analyzed the elliptical constructions in UDv2.0 by prin-
cipally using orphan relations3 as a way to identify the cases of non-promoted dependents
with promoted dependents. While this helps in identifying only a certain number of cases,
it fails to identify the cases where the dependents are promoted.

In Enhanced Dependencies, orphan is replaced by placing a null node to indicate the
elided token. However, as we discuss later, Enhanced Dependencies are not available for
all languages or even all treebanks in the same language. Thus, the identification and
correction of erroneous elliptical constructions remains a problem that needs to be solved
within the scope of basic dependency graphs in UD.

7.2 Function Words and Associated Dependency Re-
lations

Conjunctions are identified by two POS tags, viz. SCONJ, CCONJ. The associated depen-
dency relations for the two POS tags are mark, and cc respectively. While these are the
usually associated dependency relations, the boundary between the two is fuzzy. In the
sense, it is possible for a token to be marked by SCONJ, and have a cc dependency relation
(similarly for CCONJ and mark). Added to this are the cases where the tokens marked by
another POS tag can act as conjunctions. Consider the following example from en-ParTUT
(UDv2.3), where PART acts as a conjunction, and thus the mark deprel associated to it.
Example 12. Ukraine’s constitutional structure is for Ukraine’s citizens alone to decide.

Furthermore, both the POS tags in question (SCONJ, CCONJ) can have other dependency
relations attached to them as well. As such, it is difficult (and nonsensical) to limit the
deprels for a particular POS tag to occur with a particular deprel (especially in this case).
However, there can be still some processes we can observe (and correct). For example, if a

1https://universaldependencies.org/u/overview/enhanced-syntax.html#ellipsis
2https://universaldependencies.org/u/overview/specific-syntax.html#ellipsis
3https://universaldependencies.org/u/dep/orphan.html

55

https://universaldependencies.org/u/overview/enhanced-syntax.html#ellipsis
https://universaldependencies.org/u/overview/specific-syntax.html#ellipsis
https://universaldependencies.org/u/dep/orphan.html

Annotation Inconsistencies in Universal Dependencies 56/77

Figure 7.1: Tree for Example 12 showing association of PART with mark deprel

particular token occurs more with the mark deprel, but is consistently labelled as CCONJ,
the annotation should be taken a closer look at, and a possible disparity identified.

7.3 nmod4obl
In UDv1, nmod relation was used for nominals modifying either predicates or other nomi-
nals. Following a change in guidelines in v2, the deprel was restricted to modifying nomi-
nals. Furthermore, a new relation obl (oblique) was introduced for oblique dependents of
predicates.

To put it simply, this conversion implied the following in an equation format, where xvi

refers to the dependency relation x as used in version i of UD treebanks:

nmodv1 = nmodv2 ∪ obl

Let us again refer to the trees in Figure 2.1 and Figure 2.2, with respect to the token
specification this time. In the example sentence, we see that the token is:

1. Linked to the wrong head in Figure 2.1. Instead of being linked to conforms, the
token is wrongly attached to closely.

2. Is wrongly labelled as nmod in Figure 2.1, when it should have been labelled as obl
as in Figure 2.2.

This kind of error is referred to as combined head identification and labelling error in
Alzetta et al. [2017]. In the same work, the authors note that this error contributes to
around 7 % of total discovered errors in the newspaper section of the Italian UD Treebank

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 57/77

(IUDT). In the work, the authors attribute this error pattern to annotation inconsistency
internal to the treebank. Given that this error is largely stemming from the change in
guidelines, changing guidelines can be argued as a cause of this error, rather than what
is proposed by the authors in their work. Added to the difficulty of correct identification
of head, it is not always possible to isolate the error in dependency label. Although
a significantly important error, this is not covered in the scope of the current research.
Nonetheless, this is an important error that should be taken care of in future.

7.4 Punctuation
The UD Annotation guidelines on punctuation are simple and straightforward4. There are
discrepancies when it comes to implementation of the guidelines. Some of them are listed
as below:

1. It is difficult to identify the next conjunct in case of missing CCONJ and SCONJ tags.
The information about the next conjunct should be deduced semantically in most
cases.

2. Raising a punctuation is a problem that goes with the previous instance since it’s
not always clear at what level the punctuation must attach to.

3. For nested punctuation, different languages use different sets of nested punctuation
pairs, specifically with respect to quotation marks. As such, the treatment of paired
punctuation pairs needs to be handled in a language-specific manner.

The fixpunct.py block in Udapi-python [Popel et al., 2017] tries to take care of signif-
icant number of edge cases in different UD treebanks. However, a more concrete solution
is needed for the problems aforementioned.

7.5 UD and Enhanced Dependencies
Enhanced Dependencies can be understood simply as an additional layer of annotation
of dependencies in UD, which essentially marks all the dependencies. The Enhanced De-
pendencies usually aim to cover aspects which can be missed by the regular annotation
scheme, due to limitations like each node having exactly one head. However, not all of
the languages, or their treebanks have been annotated with the Enhanced Dependencies
so far. While they have been deemed to be useful in multiple cases (like that of ellipsis, as
mentioned before), their full potential might not have been realized so far.

In our experiment on conj_head (cf. Section 5), we did not work with the problem of
conjunction sandwiches. It is very likely that such constructions which are difficult to be

4https://universaldependencies.org/u/overview/specific-syntax.html#punctuation

__
Language Analysis and Processing

https://universaldependencies.org/u/overview/specific-syntax.html#punctuation

Annotation Inconsistencies in Universal Dependencies 58/77

recognized by the regular dependencies can be searched for rather easily with the Enhanced
Dependencies.

We leave it as another open problem for future research to identify cases which are more
difficult to handle with regular dependencies, while trying to use Enhanced Dependencies.
As an add-on to the task, it can also be tested if some algorithms mentioned in the research
can be improved upon/discarded, when Enhanced Dependencies are used.

7.6 Unspecified Dependencies - dep deprel
According to the UD definition of dep deprel5, the deprel is reserved for cases when a more
precise relation cannot be found. This can be either owing to the sentence splitting in
treebanks of some languages, or owing to the limitation in parsing software. Nonetheless,
the relation should be avoided as much as possible.

Noticing that some treebanks follow sentence splits where the parts of sentences might
be labelled as different sentences (as in the example of a list), the deprel in question is
more liable to be used in such instances. However, looking at the data in UDv2.4, some
languages have more than 1% of the tokens marked with such relation (Examples being
ko, ur, ja-BCCWJ, it-PoSTWITA, hi-HDTB, gl-CTG, cs-PDT, among others). While
these might be all true positives in other languages, a significantly higher count of dep is
more troublesome and is less likely to be all true positives in such cases.

An experiment can be performed on such instances where the data without any dep
deprel is used as a training set to parse the instances with the deprel in question and then
the results verified. Nonetheless, the cases of tokens marked with deprel in question need
to be reduced in some languages. As such, we leave it as a problem for future researchers
to tackle.

5https://universaldependencies.org/u/dep/dep.html

__
Language Analysis and Processing

https://universaldependencies.org/u/dep/dep.html

Conclusion
In the research, we introduced a new evaluation method for checking the similarity of dif-
ferent treebanks within the same language and tried to correct the problematic instances
identified by different error miners before. We proposed an evaluation metric in this docu-
ment, which we are hopeful would be helpful to future researchers. We tried fixing some of
the problems identified by previous researchers. While some of the attempts at the solu-
tions have been successful, the others still need refinement and additional work to complete
them, owing to their time requirements.

One major advantage of an iterative process with respect to UD treebanks is how
individual error types can be focused on in each iteration. With the UD validator (cf.
Level 5 checks in validate.py6 file) identifying and notifying the development teams of
the individual errors, the process no longer suffers from a cold start problem.

It is important to note here that the different problems identified in the document
seldom occur in isolation. As such, many of the problems can be intertwined with each
other, resulting in error propagation at an exponential scale. Having said that, very often
finding the right error and correcting it also propagates the corrections. Consider the
example of experiment on conj_head. Correction of this error instance in the specific case
of eu also corrected the case of non-projective associations in the trees.

Of the multiple problems discussed in the scope of this document, there might still be
some problems that would have escaped the eye. There is a high chance that with the
incoming iterations, more and more of the experiments discussed in the document would
be rendered obsolete, and will not be required.

As the cost of storage falls lower, the size of the treebanks would increase. Essentially, at
one point it might be impossible for human annotators to be part of the error-identification
and error-correction process for the entire treebank. The current work was primarily aimed
at finding the methods that don’t need human annotators in the pipeline, and can be relied
upon to fix the errors across different languages in a reliable manner. The research has
been in some aspect successful at that front.

There are still a considerable number of problems that have been identified, but which
could not be corrected in the scope of this research, one prime example being that of
nmod4obl. The author hopes that the future researchers will be able to tackle the problems
in a greater capacity, and possibly improve upon the methods already discussed in this
research.

6https://github.com/UniversalDependencies/tools

59

https://github.com/UniversalDependencies/tools

Bibliography
Bhasha Agrawal, Rahul Agarwal, Samar Husain, and Dipti M. Sharma. An Automatic

Approach to Treebank Error Detection Using a Dependency Parser. In International
Conference on Intelligent Text Processing and Computational Linguistics, volume 7816,
pages 294–303, 03 2013. doi: 10.1007/978-3-642-37247-6_24.

Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings for se-
quence labeling. In Proceedings of the 27th International Conference on Computational
Linguistics, pages 1638–1649, 2018.

Héctor Martínez Alonso and Daniel Zeman. Universal Dependencies for the AnCora tree-
banks. Procesamiento del Lenguaje Natural, (57), 2016.

Héctor Martínez Alonso, Željko Agić, Barbara Plank, and Anders Søgaard. Parsing uni-
versal dependencies without training. arXiv preprint arXiv:1701.03163, 2017.

Chiara Alzetta, Felice Dell’Orletta, Simonetta Montemagni, and Giulia Venturi. Dangerous
relations in dependency treebanks. In Proceedings of the 16th International Workshop
on Treebanks and Linguistic Theories, pages 201–210, 2017.

Chiara Alzetta, Felice Dell’Orletta, Simonetta Montemagni, and Giulia Venturi. Univer-
sal Dependencies and Quantitative Typological Trends. A Case Study on Word Order.
In Proceedings of the Eleventh International Conference on Language Resources and
Evaluation (LREC-2018), 2018.

Bharat Ram Ambati, Rahul Agarwal, Mridul Gupta, Samar Husain, and Dipti Misra
Sharma. Error Detection for Treebank Validation. In Proceedings of the 9th Workshop
on Asian Language Resources, pages 23–30, 2011.

Collin F Baker, Charles J Fillmore, and John B Lowe. The berkeley framenet project. In
Proceedings of the 17th international conference on Computational linguistics-Volume 1,
pages 86–90. Association for Computational Linguistics, 1998.

Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora Hladká. The Prague dependency
treebank. In Treebanks, pages 103–127. Springer, 2003.

Adriane Boyd, Markus Dickinson, and W Detmar Meurers. On detecting errors in depen-
dency treebanks. Research on Language and Computation, 6(2):113–137, 2008.

Sabine Buchholz and Erwin Marsi. CoNLL-X shared task on multilingual dependency pars-
ing. In Proceedings of the tenth conference on computational natural language learning,
pages 149–164. Association for Computational Linguistics, 2006.

60

Annotation Inconsistencies in Universal Dependencies 61/77

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng, and Ting Liu. Towards better UD
parsing: Deep contextualized word embeddings, ensemble, and treebank concatenation.
arXiv preprint arXiv:1807.03121, 2018.

Michael John Collins. A new statistical parser based on bigram lexical dependencies. In
Proceedings of the 34th annual meeting on Association for Computational Linguistics,
pages 184–191. Association for Computational Linguistics, 1996.

Daniel Zeman, Ondřej Dušek, David Mareček, Martin Popel, Loganathan Ramasamy, Jan
Štěpánek, Zdeněk Žabokrtský, and Jan Hajič. HamleDT: Harmonized Multi-Language
Dependency Treebank. Language Resources and Evaluation, 48(4):601–637, 2014. ISSN
1574-020X.

Daniël De Kok, Jianqiang Ma, and Gertjan Van Noord. A generalized method for itera-
tive error mining in parsing results. In Proceedings of the 2009 workshop on grammar
engineering across frameworks (GEAF 2009), pages 71–79, 2009.

Miryam de Lhoneux and Joakim Nivre. Should Have, Would Have, Could Have. Investigat-
ing Verb Group Representations for Parsing with Universal Dependencies. In Proceedings
of the Workshop on Multilingual and Cross-lingual Methods in NLP, pages 10–19, 2016.

Marie-Catherine de Marneffe, Timothy Dozat, Natalia Silveira, Katri Haverinen, Filip
Ginter, Joakim Nivre, and Christopher D. Manning. Universal Stanford dependencies:
A cross-linguistic typology. In Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC-2014), pages 4585–4592, Reykjavik, Iceland,
May 2014. European Languages Resources Association (ELRA). URL http://www.
lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf.

Marie-Catherine de Marneffe, Matias Grioni, Jenna Kanerva, and Filip Ginter. Assessing
the Annotation Consistency of the Universal Dependencies Corpora. In Proceedings of
the Fourth International Conference on Dependency Linguistics (Depling 2017), pages
108–115, 2017.

Felice Dell’Orletta, Giulia Venturi, and Simonetta Montemagni. Linguistically-driven Se-
lection of Correct Arcs for Dependency Parsing. Computación y Sistemas, 17(2):125–136,
2013.

Markus Dickinson andW. Detmar Meurers. Detecting Errors in Part-of-speech Annotation.
In Proceedings of the Tenth Conference on European Chapter of the Association for
Computational Linguistics - Volume 1, EACL ’03, pages 107–114, Stroudsburg, PA,
USA, 2003a. Association for Computational Linguistics. ISBN 1-333-56789-0. doi: 10.
3115/1067807.1067823. URL https://doi.org/10.3115/1067807.1067823.

Markus Dickinson and W. Detmar Meurers. Detecting Inconsistencies in Treebanks. IEEE
Transactions on Learning Technologies - TLT, 01 2003b.

__
Language Analysis and Processing

http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
https://doi.org/10.3115/1067807.1067823

Annotation Inconsistencies in Universal Dependencies 62/77

Markus Dickinson and W. Detmar Meurers. Detecting Errors in Discontinuous Struc-
tural Annotation. In Proceedings of the 43rd Annual Meeting on Association for Com-
putational Linguistics, ACL ’05, pages 322–329, Stroudsburg, PA, USA, 2005. Asso-
ciation for Computational Linguistics. doi: 10.3115/1219840.1219880. URL https:
//doi.org/10.3115/1219840.1219880.

Kira Droganova and Daniel Zeman. Elliptic Constructions: Spotting Patterns in UD
Treebanks. In Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependencies
(UDW 2017), pages 48–57, 2017.

Kira Droganova, Olga Lyashevskaya, and Daniel Zeman. Data Conversion and Consistency
of Monolingual Corpora: Russian UD Treebanks. In Proceedings of the 17th International
Workshop on Treebanks and Linguistic Theories (TLT 2018), December 13–14, 2018,
Oslo University, Norway, number 155, pages 52–65. Linköping University Electronic
Press, 2018.

Joseph H Greenberg. Some universals of grammar with particular reference to the order
of meaningful elements. Universals of language, 2:73–113, 1963.

Jiří Havelka. Beyond Projectivity: Multilingual Evaluation of Constraints and Measures on
Non-Projective Structures. In Proceedings of the 45th Annual Meeting of the Association
of Computational Linguistics, pages 608–615, Prague, Czech Republic, June 2007. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
P07-1077.

Katri Haverinen, Jenna Nyblom, Timo Viljanen, Veronika Laippala, Samuel Kohonen,
Anna Missilä, Stina Ojala, Tapio Salakoski, and Filip Ginter. Building the essential
resources for Finnish: the Turku Dependency Treebank. Language Resources and Evalu-
ation, 48(3):493–531, Sep 2014. ISSN 1574-0218. doi: 10.1007/s10579-013-9244-1. URL
https://doi.org/10.1007/s10579-013-9244-1.

Tuomo Kakkonen. Dependency treebanks: methods, annotation schemes and tools. In
Proceedings of the 15th Nordic Conference of Computational Linguistics (NODALIDA
2005), pages 94–104, Joensuu, Finland, May 2006. University of Joensuu, Finland.

Francesco Mambrini and Marco Passarotti. Non-projectivity in the Ancient Greek depen-
dency treebank. In Proceedings of the second international conference on dependency
linguistics (Depling 2013), pages 177–186, 2013.

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger. The Penn Treebank: Annotat-
ing Predicate Argument Structure. In Proceedings of the Workshop on Human Language
Technology, HLT ’94, pages 114–119, Stroudsburg, PA, USA, 1994. Association for Com-
putational Linguistics. ISBN 1-55860-357-3. doi: 10.3115/1075812.1075835.

__
Language Analysis and Processing

https://doi.org/10.3115/1219840.1219880
https://doi.org/10.3115/1219840.1219880
https://www.aclweb.org/anthology/P07-1077
https://www.aclweb.org/anthology/P07-1077
https://doi.org/10.1007/s10579-013-9244-1

Annotation Inconsistencies in Universal Dependencies 63/77

Marie-Catherine de Marneffe, Miriam Connor, Natalia Silveira, Samuel R. Bowman, Tim-
othy Dozat, and Christopher D. Manning. More Constructions, More Genres: Extend-
ing Stanford Dependencies. In Proceedings of the Second International Conference on
Dependency Linguistics (DepLing 2013), pages 187–196, Prague, Czech Republic, Au-
gust 2013. Charles University in Prague, Matfyzpress, Prague, Czech Republic. URL
https://www.aclweb.org/anthology/W13-3721.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach Brundage, Yoav Goldberg, Dipanjan
Das, Kuzman Ganchev, Keith Hall, Slav Petrov, Hao Zhang, T Oscar, et al. Universal
dependency annotation for multilingual parsing. In Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pages 92–97, 2013.

Joakim Nivre and Chiao-Ting Fang. Universal Dependency Evaluation. In Proceedings of
the NoDaLiDa 2017 Workshop on Universal Dependencies, 22 May, Gothenburg Sweden,
number 135, pages 86–95. Linköping University Electronic Press, 2017.

Joakim Nivre, Cristina Bosco, Jinho Choi, Marie-Catherine de Marneffe, Timothy Dozat,
Richárd Farkas, Jennifer Foster, Filip Ginter, Yoav Goldberg, Jan Hajič, Jenna Kan-
erva, Veronika Laippala, Alessandro Lenci, Teresa Lynn, Christopher Manning, Ryan
McDonald, Anna Missilä, Simonetta Montemagni, Slav Petrov, Sampo Pyysalo, Natalia
Silveira, Maria Simi, Aaron Smith, Reut Tsarfaty, Veronika Vincze, and Daniel Zeman.
Universal Dependencies 1.0, 2015. URL http://hdl.handle.net/11234/1-1464. LIN-
DAT/CLARIN digital library at the Institute of Formal and Applied Linguistics (ÚFAL),
Faculty of Mathematics and Physics, Charles University.

Joakim Nivre, Mitchell Abrams, Željko Agić, Lars Ahrenberg, Gabrielė Aleksandravičiūtė,
Lene Antonsen, Katya Aplonova, Maria Jesus Aranzabe, Gashaw Arutie, Masayuki Asa-
hara, Luma Ateyah, Mohammed Attia, Aitziber Atutxa, Liesbeth Augustinus, Elena
Badmaeva, Miguel Ballesteros, Esha Banerjee, Sebastian Bank, Verginica Barbu Mi-
titelu, Victoria Basmov, John Bauer, Sandra Bellato, Kepa Bengoetxea, Yevgeni Berzak,
Irshad Ahmad Bhat, Riyaz Ahmad Bhat, Erica Biagetti, Eckhard Bick, Agnė Bielin-
skienė, Rogier Blokland, Victoria Bobicev, Loïc Boizou, Emanuel Borges Völker, Carl
Börstell, Cristina Bosco, Gosse Bouma, Sam Bowman, Adriane Boyd, Kristina Brokaitė,
Aljoscha Burchardt, Marie Candito, Bernard Caron, Gauthier Caron, Gülşen Cebiroğlu
Eryiğit, Flavio Massimiliano Cecchini, Giuseppe G. A. Celano, Slavomír Čéplö, Savas
Cetin, Fabricio Chalub, Jinho Choi, Yongseok Cho, Jayeol Chun, Silvie Cinková, Au-
rélie Collomb, Çağrı Çöltekin, Miriam Connor, Marine Courtin, Elizabeth Davidson,
Marie-Catherine de Marneffe, Valeria de Paiva, Arantza Diaz de Ilarraza, Carly Dick-
erson, Bamba Dione, Peter Dirix, Kaja Dobrovoljc, Timothy Dozat, Kira Droganova,
Puneet Dwivedi, Hanne Eckhoff, Marhaba Eli, Ali Elkahky, Binyam Ephrem, Tomaž Er-
javec, Aline Etienne, Richárd Farkas, Hector Fernandez Alcalde, Jennifer Foster, Cláudia
Freitas, Kazunori Fujita, Katarína Gajdošová, Daniel Galbraith, Marcos Garcia, Moa
Gärdenfors, Sebastian Garza, Kim Gerdes, Filip Ginter, Iakes Goenaga, Koldo Gojenola,

__
Language Analysis and Processing

https://www.aclweb.org/anthology/W13-3721
http://hdl.handle.net/11234/1-1464

Annotation Inconsistencies in Universal Dependencies 64/77

Memduh Gökırmak, Yoav Goldberg, Xavier Gómez Guinovart, Berta González Saave-
dra, Matias Grioni, Normunds Grūzītis, Bruno Guillaume, Céline Guillot Barbance,
Nizar Habash, Jan Hajič, Jan Hajič jr., Linh Hà Mỹ, Na-Rae Han, Kim Harris, Dag
Haug, Johannes Heinecke, Felix Hennig, Barbora Hladká, Jaroslava Hlaváčová, Florinel
Hociung, Petter Hohle, Jena Hwang, Takumi Ikeda, Radu Ion, Elena Irimia, Ọlájídé
Ishola, Tomáš Jelínek, Anders Johannsen, Fredrik Jørgensen, Hüner Kaşıkara, Andre
Kaasen, Sylvain Kahane, Hiroshi Kanayama, Jenna Kanerva, Boris Katz, Tolga Kayade-
len, Jessica Kenney, Václava Kettnerová, Jesse Kirchner, Arne Köhn, Kamil Kopacewicz,
Natalia Kotsyba, Jolanta Kovalevskaitė, Simon Krek, Sookyoung Kwak, Veronika Laip-
pala, Lorenzo Lambertino, Lucia Lam, Tatiana Lando, Septina Dian Larasati, Alexei
Lavrentiev, John Lee, Phương Lê Hồng, Alessandro Lenci, Saran Lertpradit, Her-
man Leung, Cheuk Ying Li, Josie Li, Keying Li, KyungTae Lim, Yuan Li, Nikola
Ljubešić, Olga Loginova, Olga Lyashevskaya, Teresa Lynn, Vivien Macketanz, Aibek
Makazhanov, Michael Mandl, Christopher Manning, Ruli Manurung, Cătălina Mărăn-
duc, David Mareček, Katrin Marheinecke, Héctor Martínez Alonso, André Martins, Jan
Mašek, Yuji Matsumoto, Ryan McDonald, Gustavo Mendonça, Niko Miekka, Margarita
Misirpashayeva, Anna Missilä, Cătălin Mititelu, Yusuke Miyao, Simonetta Montemagni,
Amir More, Laura Moreno Romero, Keiko Sophie Mori, Tomohiko Morioka, Shinsuke
Mori, Shigeki Moro, Bjartur Mortensen, Bohdan Moskalevskyi, Kadri Muischnek, Yugo
Murawaki, Kaili Müürisep, Pinkey Nainwani, Juan Ignacio Navarro Horñiacek, Anna
Nedoluzhko, Gunta Nešpore Bērzkalne, Lương Nguyễn Thị, Huyền Nguyễn Thị Minh,
Yoshihiro Nikaido, Vitaly Nikolaev, Rattima Nitisaroj, Hanna Nurmi, Stina Ojala, Adé-
dayọ̀ Olúòkun, Mai Omura, Petya Osenova, Robert Östling, Lilja Øvrelid, Niko Par-
tanen, Elena Pascual, Marco Passarotti, Agnieszka Patejuk, Guilherme Paulino Passos,
Angelika Peljak Łapińska, Siyao Peng, Cenel-Augusto Perez, Guy Perrier, Daria Petrova,
Slav Petrov, Jussi Piitulainen, Tommi A Pirinen, Emily Pitler, Barbara Plank, Thierry
Poibeau, Martin Popel, Lauma Pretkalniņa, Sophie Prévost, Prokopis Prokopidis, Adam
Przepiórkowski, Tiina Puolakainen, Sampo Pyysalo, Andriela Rääbis, Alexandre Rade-
maker, Loganathan Ramasamy, Taraka Rama, Carlos Ramisch, Vinit Ravishankar, Livy
Real, Siva Reddy, Georg Rehm, Michael Rießler, Erika Rimkutė, Larissa Rinaldi, Laura
Rituma, Luisa Rocha, Mykhailo Romanenko, Rudolf Rosa, Davide Rovati, Valentin
Roșca, Olga Rudina, Jack Rueter, Shoval Sadde, Benoît Sagot, Shadi Saleh, Alessio
Salomoni, Tanja Samardžić, Stephanie Samson, Manuela Sanguinetti, Abigail Walsh
Sarah McGuinness, Dage Särg, Baiba Saulīte, Yanin Sawanakunanon, Nathan Schnei-
der, Sebastian Schuster, Djamé Seddah, Wolfgang Seeker, Mojgan Seraji, Mo Shen,
Atsuko Shimada, Hiroyuki Shirasu, Muh Shohibussirri, Dmitry Sichinava, Natalia Sil-
veira, Maria Simi, Radu Simionescu, Katalin Simkó, Mária Šimková, Kiril Simov,
Aaron Smith, Isabela Soares Bastos, Carolyn Spadine, Antonio Stella, Milan Straka,
Jana Strnadová, Alane Suhr, Umut Sulubacak, Shingo Suzuki, Zsolt Szántó, Dima
Taji, Yuta Takahashi, Fabio Tamburini, Takaaki Tanaka, Isabelle Tellier, Guillaume
Thomas, Liisi Torga, Trond Trosterud, Anna Trukhina, Reut Tsarfaty, Francis Ty-
ers, Sumire Uematsu, Zdeňka Urešová, Larraitz Uria, Hans Uszkoreit, Sowmya Vajjala,
Daniel van Niekerk, Gertjan van Noord, Viktor Varga, Eric Villemonte de la Clergerie,

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 65/77

Veronika Vincze, Lars Wallin, Jing Xian Wang, Jonathan North Washington, Max-
imilan Wendt, Seyi Williams, Mats Wirén, Christian Wittern, Tsegay Woldemariam,
Tak-sum Wong, Alina Wróblewska, Mary Yako, Naoki Yamazaki, Chunxiao Yan, Koichi
Yasuoka, Marat M. Yavrumyan, Zhuoran Yu, Zdeněk Žabokrtský, Amir Zeldes, Daniel
Zeman, Manying Zhang, and Hanzhi Zhu. Universal Dependencies 2.4, 2019. URL
http://hdl.handle.net/11234/1-2988. LINDAT/CLARIN digital library at the In-
stitute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

Slav Petrov, Dipanjan Das, and Ryan McDonald. A Universal Part-of-Speech Tagset. In
Proceedings of the Eighth International Conference on Language Resources and Evalua-
tion (LREC-2012), pages 2089–2096, Istanbul, Turkey, May 2012. European Languages
Resources Association (ELRA). URL http://www.lrec-conf.org/proceedings/
lrec2012/pdf/274_Paper.pdf.

Martin Popel, Zdeněk Žabokrtskỳ, and Martin Vojtek. Udapi: Universal API for universal
dependencies. In Proceedings of the NoDaLiDa 2017 Workshop on Universal Dependen-
cies (UDW 2017), pages 96–101, 2017.

Rudolf Rosa and Zdenek Zabokrtsky. Klcpos3-a language similarity measure for delexi-
calized parser transfer. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers), pages 243–249, 2015.

Benoît Sagot and Éric de La Clergerie. Error mining in parsing results. In Proceedings of
the 21st international conference on computational linguistics and 44th annual meeting
of the association for computational linguistics, pages 329–336, 2006.

Timothy Shopen. Language Typology and Syntactic Description, volume 1, pages 40–
59. Cambridge University Press, 2 edition, 2007. ISBN 0-511-36671-X. doi: 10.1017/
CBO9780511619427.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer Sentinel
Mixture Models. CoRR, abs/1609.07843, 2016.

Milan Straka and Jana Straková. UDPipe, 2016. URL http://hdl.handle.net/11234/
1-1702. LINDAT/CLARIN digital library at the Institute of Formal and Applied Lin-
guistics (ÚFAL), Faculty of Mathematics and Physics, Charles University.

Milan Straka, Jan Hajič, Jana Straková, and Jan Hajič jr. Parsing Universal Dependency
Treebanks using Neural Networks and Search-Based Oracle. In Proceedings of Fourteenth
International Workshop on Treebanks and Linguistic Theories (TLT 14), December 2015.

Gertjan Van Noord. Error mining for wide-coverage grammar engineering. In Proceedings
of the 42nd Annual Meeting on Association for Computational Linguistics, page 446.
Association for Computational Linguistics, 2004.

__
Language Analysis and Processing

http://hdl.handle.net/11234/1-2988
http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf
http://hdl.handle.net/11234/1-1702
http://hdl.handle.net/11234/1-1702

Annotation Inconsistencies in Universal Dependencies 66/77

Erik Velldal, Lilja Øvrelid, and Petter Hohle. Joint UD Parsing of Norwegian Bokmål and
Nynorsk. In Proceedings of the 21st Nordic Conference on Computational Linguistics,
pages 1–10, Gothenburg, Sweden, May 2017. Association for Computational Linguistics.
URL https://www.aclweb.org/anthology/W17-0201.

Daniel Zeman. Reusable Tagset Conversion Using Tagset Drivers. In Proceedings of the
Language Resources and Evaluation Conference, LREC, 2008. ISBN 2-9517408-4-0.

Daniel Zeman, David Mareček, Jan Mašek, Martin Popel, Loganathan Ramasamy, Rudolf
Rosa, Jan Štěpánek, and Zdeněk Žabokrtský. HamleDT 2.0, 2014. URL http://hdl.
handle.net/11858/00-097C-0000-0023-9551-4. LINDAT/CLARIN digital library at
the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and
Physics, Charles University.

Daniel Zeman, Martin Popel, Milan Straka, Jan Hajič, Joakim Nivre, Filip Ginter, Juhani
Luotolahti, Sampo Pyysalo, Slav Petrov, Martin Potthast, Francis Tyers, Elena Bad-
maeva, Memduh Gokirmak, Anna Nedoluzhko, Silvie Cinková, Jan Hajič jr., Jaroslava
Hlaváčová, Václava Kettnerová, Zdeňka Urešová, Jenna Kanerva, Stina Ojala, Anna Mis-
silä, Christopher D. Manning, Sebastian Schuster, Siva Reddy, Dima Taji, Nizar Habash,
Herman Leung, Marie-Catherine de Marneffe, Manuela Sanguinetti, Maria Simi, Hiroshi
Kanayama, Valeria de Paiva, Kira Droganova, Héctor Martínez Alonso, Çağrı Çöltekin,
Umut Sulubacak, Hans Uszkoreit, Vivien Macketanz, Aljoscha Burchardt, Kim Harris,
Katrin Marheinecke, Georg Rehm, Tolga Kayadelen, Mohammed Attia, Ali Elkahky,
Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael Mandl, Jesse Kirchner, Hector Fer-
nandez Alcalde, Jana Strnadová, Esha Banerjee, Ruli Manurung, Antonio Stella, Atsuko
Shimada, Sookyoung Kwak, Gustavo Mendonça, Tatiana Lando, Rattima Nitisaroj, and
Josie Li. CoNLL 2017 shared task: Multilingual parsing from raw text to universal
dependencies. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing
from Raw Text to Universal Dependencies, pages 1–19, Vancouver, Canada, August
2017. Association for Computational Linguistics. doi: 10.18653/v1/K17-3001. URL
https://www.aclweb.org/anthology/K17-3001.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Potthast, Milan Straka, Filip Ginter,
Joakim Nivre, and Slav Petrov. CoNLL 2018 shared task: multilingual parsing from
raw text to universal dependencies. In Proceedings of the CoNLL 2018 Shared Task:
Multilingual Parsing from Raw Text to Universal Dependencies, pages 1–21, 2018.

__
Language Analysis and Processing

https://www.aclweb.org/anthology/W17-0201
http://hdl.handle.net/11858/00-097C-0000-0023-9551-4
http://hdl.handle.net/11858/00-097C-0000-0023-9551-4
https://www.aclweb.org/anthology/K17-3001

List of Figures

2.1 Tree Structure, as per UDv1.2 for Example 4 12
2.2 Tree Structure, as per UDv2.0 for Example 4 12
2.3 Sample Non-projective Tree . 13
2.4 Example taken from Alzetta et al. [2017] 15

4.1 LAS for size disparity . 25
4.2 LAS Scores for Genre Optimization . 30
4.3 Tagging Accuracy Scores for size disparity 35
4.4 θP OS scores for size disparity . 36

5.1 Possible Case of Conjunction Sandwich . 42
5.2 Possible Wrong Attachments of a Coordinating Conjunction: Both con-

juncts at same level . 43
5.3 Possible Wrong Attachments of a Coordinating Conjunction 44

6.1 Rug plot with Distribution of Predictions with low confidence score 52

7.1 Tree for Example 12 showing association of PART with mark deprel 56

67

List of Tables

1.1 Illustration of Formatting styles . 7

4.1 Dataset for the Experiment on Harmony Between Treebanks, UDv2.4 . . . 21
4.2 LAS Scores (in %) for Different Treebanks per language, UDv2.4 22
4.3 train Size of cs Treebanks . 23
4.4 train Size of fi Treebanks . 23
4.5 Genres in fi Treebanks . 23
4.6 Size of hi-hdtb treebank . 24
4.7 Sentences in PUD treebanks . 24
4.8 Distribution Counts of various genres in fi-tdt treebank 27
4.9 Downsampling Genre-wise Data for fi-tdt Treebank 28
4.10 Data Split of fi-tdt for studying effect of Genre Distribution 29
4.11 θP OS Scores for Different Treebanks per language, UDv2.4 34
4.12 KLcpos3 Scores for Genre Optimization . 38

5.1 Counts of Coordinating Conjunctions attached in wrong direction 43
5.2 Runtime for Algorithm with Udapy Python Block 47
5.3 Results of Experiment on conj_head, evaluated with 100 random samples 48
5.4 Before correction . 48
5.5 After correction . 48

6.1 Hyper-Parameters for Neural Network . 51
6.2 Categories of Error Patterns . 52
6.3 Metrics of Best Model trained over original hi data 54
6.4 Results of Manual Annotation . 54
6.5 Statistics for hi data . 54

A.1 Languages in UDv2.4, identified with their ISO Codes 74
A.2 Languages in UDv2.4, without defined ISO Codes 74
A.3 Multiple Treebanks in Different Languages, UDv2.4 75
A.4 Languages with PUD Treebanks, UDv2.4 76
A.5 Unavailable Data in UDv2.4 Treebanks . 77

68

List of Abbreviations
• CLAS- Content-based Labelled Attachment Score

• CoNLL- Conference on Computational Natural Language Learning

• GS- Gold Standard

• LAS- Labelled Attachment Score

• LISCA- LInguistically-driven Selection of Correct Arts

• LTR- Left To Right written order language

• MWE- Multi-Word Entity

• NER- Named Entity Recognition

• POS- Part Of Speech

• RTL- Right To Left written order language

• SOTA- State Of The Art

• TAME- Time, Aspect, Modality, Evidentitality

• UAS- Unlabelled Attachment Score

• UD- Universal Dependencies

69

A. Appendix
A.1 Terminology Pertaining to UD
This appendix is meant primarily for the offline/hard copy readers of the document. A
better (and official) explanation of the terms can be accessed online1,2.

UD uses an extension of CONLL-X format [Buchholz and Marsi, 2006], referred to as
CONLL-U format. The CONLL-U format is used for the annotation procedure, with three
types of lines. Each line is delimited by LF character as line break, written in UTF-8
encoding. The details of the line types are as follows:

1. Blank Line: A line without any content, used as a separator for annotations of
different sentences in the treebank.

2. Comment Line: A line starting with hash (#) symbol, typically contains details
about the annotated sentence. The details that are common across all treebanks are
‘sent_id‘ (a unique ID associated with each sentence in the treebank), and ‘text’ (the
text of the annotated sentence). The comment can also include any other details like
paragraph id, document id, etc.

3. Word Line: Each Word Line contains the annotation of a single word, in a 10-
column TSV (tab-separated values) format. The columns, in order, and their expla-
nation are as follows:

(a) ID: Word Index in the sentence, starts at 1. Can be a ranged value for fused
tokens and multiword tokens; decimal value for empty nodes. The ID of a token
can be only greater than 0.

(b) FORM: Word Form, as it appears in the sentence.
(c) LEMMA: Lemma or Stem of Word Form.
(d) UPOS: The Universal POS tag of the word, as per UD Tagset.
(e) XPOS: The language-specific POS tag of the word. Generally comes from the

original tagset that was converted into UD.
(f) FEATS: List of morphological features from UD feature inventory, or a lan-

guage specific version thereof.
(g) HEAD: Head of the current word in dependency relation. Contains ‘ID’ of the

parent word, or 0 if the parent word is ‘Root’ (explained later).
(h) DEPREL: Universal Dependency Relation, extendable with language specific

extension thereof (explained later).
1https://universaldependencies.org/format.html
2https://universaldependencies.org/u/overview/morphology.html

70

https://universaldependencies.org/format.html
https://universaldependencies.org/u/overview/morphology.html

Annotation Inconsistencies in Universal Dependencies 71/77

(i) DEPS: Enhanced Dependency Relation in form of head:deprel pairs.
(j) MISC: Any other annotation.

Of the different columns (referred to as Fields), there are associated restrictions,
briefed as follows:

• Fields must not be empty. An unspecified value is represented by an underscore
(_) symbol.

• Fields other than FORM and LEMMA cannot contain space characters.
• UPOS, HEAD, DEPREL are not allowed to be left unspecified.

There are some additional points with respect to UD Annotation that must be clarified.

1. For the dependency tree, UD annotates the global root of a sentence as a token with
ID=0, referred to as ROOT. The root in the sentence is always a singular unit, and
is a direct child of this ROOT node.

2. A dependency relation is expressed in a format that combines the universal deprel and
language specific part of deprel with a colon mark (:). The language specific extension
is optional, but is present in a lot of cases nonetheless. We refer to the universal
relation as udeprel, and the language specific extension as xdeprel. Following example
illustrates the same.
Example 13. In DEPREL Field value as acl:relcl, acl is the universal depen-
dency relation (referred to as udeprel, as per Udapi nomenclature) while relcl is
the language specific extension of acl udeprel (referred to as xdeprel, as per Udapi
nomenclature).

As mentioned earlier, we refer to udeprel when we talk about deprels in this docu-
ment, unless otherwise stated.

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 72/77

A.2 List of Language Codes
This appendix contains the list of languages, along with their identification codes, as used
in the different treebanks of UDv2.4. A full list of ISO 693-2 language codes can also be
accessed online3.

Table A.1 indicates languages where the ISO code (ISO 693-1 or ISO 693-2) is used as
an identifier. If a language is not identified by its ISO code, it is listed in Table A.2.

Note:

• * against a language name indicates language not present in UDv2.3.

• + against a language name indicates added data from UDv2.3 to UDv2.4. The
addition can be in the form of entire treebank, or train/dev data for a given treebank.

Code Language Name
af Afrikaans
akk Akkadian
am Amharic
ar Arabic
be Belarusian
bg Bulgarian
bm Bambara
br Breton
ca Catalan
cop Coptic
cs Czech
cu Old Church Slavonic
cy Welsh∗

da Danish
de German+

el Greek
en English
es Spanish
et Estonian
eu Basque
fa Persian
fi Finnish
fo Faroese
fr French+

ga Irish
Continued on next page

3https://www.loc.gov/standards/iso639-2/php/code_list.php

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 73/77

Code Language Name
gl Galician
got Gothic
grc Ancient Greek
he Hebrew
hi Hindi
hr Croatian
hu Hungarian
hsb Upper Sorbian
hy Armenian+

id Indonesian
it Italian+

ja Japanese
kk Kazakh
ko Korean
krl Karelian∗

la Latin
lt Lithuanian+

lv Latvian
mr Marathi
mt Maltese
myv Erzya
no Norwegian+

nl Dutch
pl Polish
pt Portuguese
ro Romanian
ru Russian+

sa Sanskrit
sk Slovak
sl Slovenian
sme North Sami
sr Serbian
sv Swedish
ta Tamil
te Telugu
th Thai
tl Tagalog
tr Turkish
ug Uyghur
uk Ukrainian

Continued on next page

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 74/77

Code Language Name
ur Urdu
vi Vietnamese
wo Wolof∗
yo Yoruba
yue Cantonese
zh Chinese

Table A.1: Languages in UDv2.4, identified with their ISO Codes

Code Language Name
aii Assyrian∗

bxr Buryat
fro Old French
gun Mbya Guarani∗
kmr Kurmanji
kpv Komi Zyrian
lzh Classical Chinese∗

orv Old Russian∗

pcm Naija
qhe Hindi-English
swl Swedish Sign Language
wbp Warlpiri

Table A.2: Languages in UDv2.4, without defined ISO Codes

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 75/77

A.3 Multiple Treebanks in Languages (UDv2.4)
Table A.3 contains the different languages containing the different treebanks. The second
column of the table corresponds to the count of the different treebanks, and the last column
contains the name of the treebanks. Notice that PUD treebanks are not included in the
counts, or the additional treebanks. A list of PUD treebanks can be accessed in Appendix
A.4.

Language Count Treebank Names
ar 2 PADT, NYUAD
cs 4 CAC, CLTT, FicTree, PDT
de 3 GSD, HDT, LIT
en 5 ESL, EWT, GUM, LinES, ParTUT
es 2 AnCora, GSD
et 2 EDT, EWT
fi 2 FTB, TDT
fr 5 FQB, FTB, GSD, ParTUT, Sequoia
gl 2 CTG, TreeGal
grc 2 Perseus, PROIEL
gun 2 Dooley, Thomas
it 4 ISDT, ParTUT, PoSTWITA, VIT
ja 3 BCCWJ, GSD, Modern
ko 2 GSD, Kaist
kpv 2 IKDP, Lattice
la 3 ITTB, Perseus, PROIEL
lt 2 ALKSNIS, HSE
nl 2 Alpino, LassySmall
no 3 Bokmaal, Nynorsk, NynorskLIA
pl 2 LFG, PDB
pt 2 Bosque, GSD
ro 2 Nonstandard, RRT
ru 3 GSD, SynTagRus, Taiga
sl 2 SSJ, SST
sv 2 LinES, Talbanken
tr 2 GB, IMST
zh 3 CFL, GSD, HK

Table A.3: Multiple Treebanks in Different Languages, UDv2.4

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 76/77

A.4 PUD Treebanks
Table A.4 contains a list of languages which contain a PUD treebank. Notice that PUD
treebanks contain only the test set, and are devoid of train and dev data.

Code Language Name
ar Arabic
cs Czech
de German
en English
es Spanish
fi Finnish
fr French
hi Hindi
id Indonesian
it Italian
ja Japanese
ko Korean
pl Polish
pt Portuguese
ru Russian
sv Swedish
th Thai
tr Turkish
zh Chinese

Table A.4: Languages with PUD Treebanks, UDv2.4

__
Language Analysis and Processing

Annotation Inconsistencies in Universal Dependencies 77/77

A.5 Treebanks in UDv2.4, sans train/dev Data
The Table A.5 lists treebanks (in alphabetical order) with either of train or dev data being
unavailable. Note that all PUD treebanks, generated for CONLL-2018 Shared Task, do
not have either of train or dev data, and are therefore not included in this table.

Treebank Name Unavailable Data
Akkadian-PISANDUB train, dev
Amharic-ATT train, dev
Assyrian-AS train, dev
Bambara-CRB train, dev
Breton-KEB train, dev
Buryat-BDT dev
Cantonese-HK train, dev
Chinese-CFL train, dev
Chinese-HK train, dev
Erzya-JR train, dev
Estonian-EWT dev
Faroese-OFT train, dev
French-FQB train, dev
Galician-TreeGal dev
German-LIT train, dev
Irish-IDT dev
Japanese-Modern train, dev
Karelian-KKPP train, dev
Kazakh-KTB dev
Komi_Zyrian-IKDP train, dev
Komi_Zyrian-Lattice train, dev
Kurmanji-MG dev
Mbya_Guarani-Dooley train, dev
Mbya_Guarani-Thomas train, dev
Naija-NSC train, dev
North_Sami-Giella dev
Old_Russian-RNC train, dev
Sanskrit-UFAL train, dev
Slovenian-SST dev
Tagalog-TRG train, dev
Turkish-GB train, dev
Upper_Sorbian-UFAL dev
Warlpiri-UFAL train, dev
Welsh-CCG train, dev
Yoruba-YTB train, dev

Table A.5: Unavailable Data in UDv2.4 Treebanks

__
Language Analysis and Processing

	Introduction
	Inter-conversion of Treebanks
	Universal Dependencies (UD) Project
	Motivation for the Problem
	Formal Problem Statement
	Data Source
	Organizational Layout of the Document
	A Brief Overview of Conventions Used

	Problems Identified in UD Treebanks
	Intra-Language Inter-Treebank Harmony
	Problems Caused by Change of Guidelines in UDv2
	conj_head

	Open Problems
	Problems with Unfinished Experiments
	Problems Outside Scope of Current Research
	Problems with Failed Results

	Previous Research
	Error Mining Methods
	Treebank Harmonization

	Experiment 1: Intra-Language Inter-Treebank Harmony
	Dataset
	Tuning Parameter 1
	Optimization for Size Disparity
	Optimization for Genre Distribution
	Other Factors
	Brief Discussion on 1 metric

	Tuning Parameter 2
	Optimization for Size Disparity
	Optimization for Genre Distribution

	Combining Optimized Values; Further Discussion

	Experiment 2: conj_head
	Observations Pertaining to the Problem Statement
	Direction of Dependency
	Asyndetic Coordination
	Nested Conjunctions
	Conjunction Sandwich

	Dataset Definition
	Experimental Setup
	Algorithm
	Evaluation and Results

	Negative Experiment: AUX vs. VERB
	Observations Pertaining to the Problem Statement
	Dataset Definition
	Experiment
	Results
	Discussion of the Results

	Future Work Recommendations
	Ellipsis
	Function Words and Associated Dependency Relations
	nmod4obl
	Punctuation
	UD and Enhanced Dependencies
	Unspecified Dependencies - dep deprel

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Appendix
	Terminology Pertaining to UD
	List of Language Codes
	Multiple Treebanks in Languages (UDv2.4)
	PUD Treebanks
	Treebanks in UDv2.4, sans train/dev Data

