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Abstract
In ASR systems, dictionaries are usually used to describe pronunciations of words in a
language. These dictionaries are typically hand-crafted by linguists. One of the most
significant drawbacks of dictionaries created this way is that linguistically motivated

pronunciations are not necessarily the optimal ones for ASR. The goal of this research was
to explore approaches of data-driven pronunciation generation for ASR. We investigated

several approaches of lexicon generation and implemented the completely new
data-driven solution based on the pronunciation clustering. We proposed an approach for

feature extraction and researched different unsupervised methods for pronunciation
clustering. We evaluated the proposed approach and compared it with the current

hand-crafted dictionary. The proposed data-driven approach could beat the established
baselines but underperformed in comparison to the hand-crafted dictionary which could

be due to unsatisfactory features extracted from data or insufficient fine tuning.
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1 Introduction

Automatic Speech Recognition (ASR) is a very important field of speech processing which
allows understanding of human speech by computers. The last two decades showed a rise
in interest in speech recognition and research in this field has been intensively carried out
worldwide. This interest resulted in big improvement of speech recognition systems due to
various advances in speech signal processing, different speech recognition algorithms and
architectures and diverse data modelling techniques. All this progress in the field of ASR
enabled to successfully use speech recognition in many different applications that vary in
their difficulty from simple isolated word recognition to complex large vocabulary speech
recognition (Furui, 1986; Dahl et al., 2011). However, even such noticeable improvements
in speech recognition field cannot eliminate all problems that human speech poses to a
speech recognizer. There still exist several tasks for ASR that do not gain the desired
performance such as real-time speech recognition, speech recognition of noisy input and
recognition of accented speech (Radha and Vimala, 2012).

For building an ASR model, a pronunciation dictionary should be available where
every word has a corresponding pronunciation sequence. The pronunciation dictionary
(also called lexicon) allows a speech recognizer to build the link between the audio signal
and its phonetic representation. The most common way to obtain the ASR lexicon is to
hand-craft it using expert knowledge.

1.1 Motivation

Having the human factor involved, lexicons cannot be considered as a fully-reliable source
of phonetic knowledge due to some level of perception subjectivity and discrepancy along
the lexicon. Even having several linguists working on lexicon creation does not solve the
problem of subjectivity since there exists some amount of disagreement among lexicon
entries created by different linguists which is hard to resolve. These inconsistencies of a
hand-crafted dictionary may have an impact on ASR system performance because speech
recognition systems require quite a consistent lexicon to perform well. Moreover, linguis-
tically motivated pronunciations do not necessarily suit the best for ASR modelling. The
linguistic knowledge that is used for pronunciation creation does not fit the real-world
picture of unarticulated, not very clear and full of disfluencies speech.

One of the possible ways to escape from linguistically motivated pronunciations in a
lexicon is to use automatically generated lexicons. ASR lexicons that are generated au-
tomatically from data are more motivated by statistics of the data and do not involve
linguistic knowledge. Potentially, this kind of lexicons is very powerful and can provide
information that is very valuable in acoustic modelling for a speech recognizer. The work
conducted in the field of automatic pronunciation generation is extensive and covers many
different applications starting from generating pronunciation entries for out-of-vocabulary
words and finishing with the creation of a complete lexicon from scratch. Most of the
proposed methods use grapheme-to-phoneme conversion for lexicon generation (Taylor,
2005; Bisani and Ney, 2008; Rao et al., 2015) which makes pronunciation generation sys-

Language Analysis and Processing



Data-Driven Lexicon Generation for ASR 2/88

tem less language independent since it relies on a strong relation between phonemes and
graphemes. Some works propose unsupervised techniques of pronunciation generation that
do not need any initial supervision for lexicon creation and can generate word pronun-
ciations based on data provided (Takahashi et al., 2016; Hartmann et al., 2013). These
systems usually concentrate not only on the phonetic sequence generation for a word but
also on the derivation of minimal acoustic units that are used in these sequences. How-
ever, according to our knowledge, most of the proposed methods in the literature consider
the generation of the best pronunciation for a word in a lexicon without possibility to
have multiple pronunciations. This is not the case for most words due to various existing
pronunciations for a word in a language or even different parts of speech.

Additionally, this thesis was done as a part of an internship at Sony Europe. The
thesis motivation was framed by the industrial need for investigations in the pronunciation
generation field, especially in the area of data-driven improvement of ASR dictionaries.

1.2 Goal

Considering the already carried out research in the pronunciation generation domain, we
propose to use another approach for data-driven lexicon generation that was not investi-
gated so far in the pronunciation generation field. This approach is also fully data-driven
and derives phonetic sequences for lexicon entries directly from audio data. Moreover, it
can generate multiple meaningful pronunciations for a word in a chosen vocabulary. As the
main application for this approach, we see the regeneration of a lexicon so that the ASR
system could benefit from adapting the lexicon generation process to a particular system,
improving overall ASR performance. An additional application can be out-of-vocabulary
word handling.

This work is structured as follows. In chapter 2, we provide the theoretical background
on ASR field and how lexicons are used in ASR systems. Chapter 3 gives an overview
on the conducted research on pronunciation generation. In chapter 4, we outline the
proposed lexicon generation approach and describe the whole experiment design. Chapter
5 introduces the corpus that we chose for our experiments. In chapters 6 and 7, we discuss
in detail the proposed system for data-driven pronunciation generation. In chapter 6, we
explain the necessary feature extraction procedure for pronunciation clustering which is
discussed further in chapter 7. Chapter 8 considers different systems that can be used for
comparison with the proposed approach such as various baseline and benchmark systems.
In chapter 9, we present our experiments on data-driven pronunciation generation and
discuss the obtained results. In conclusion, we review the work that has been done and
consider possible future work.
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2 Theoretical Background

Pronunciation dictionaries play a big role in speech recognition systems giving the op-
portunity to model the acoustics of phonemes. In this chapter, we introduce the main
theory on how automatic speech recognition works and how lexicons are involved in speech
recognition systems.

In section 2.1, we introduce the notion of automatic speech recognition system, its ar-
chitecture and performance evaluation. Section 2.2 provides general information on neural
networks and describes recurrent neural networks that are widely used for speech recogni-
tion. In section 2.3, we give a brief overview of approaches for ASR. Finally, section 2.4 is
devoted to lexicons, their role in ASR systems and the ways they can be created.

2.1 ASR

Automatic Speech Recognition (ASR) is one of the research areas in speech processing and
its task is to convert a speech signal to a sequence of words (Karpagavalli and Chandra,
2016). The goal of the ASR system is to predict the most likely sequence of words that
exists in some language for the given observation. Thus, the task of ASR can be defined
with the following formula:

Ŵ = arg max
W

P (W |O) (1)

where W is a sequence of words that exists in a language, O is an observed acoustic
sequence and Ŵ is a hypothesized phonetic sequence.

According to Bayes theorem (Bayes, 1763), the ASR goal can be modified as follows:

Ŵ = arg max
W

P (O|W )P (W )

P (O)
(2)

We rewrite the formula in terms of P (W |O) and P (W ) because we are able to estimate
these statistical models using available data. P (W ) is the prior probability of the phoneme
sequence, namely word, and is calculated based on the frequency of n-grams that contain
word W in a language corpus. The probability P (W ) is also known as the probability
of a language model in ASR. The probability P (O|W ) is the likelihood of the acoustic
observation O given some sequence W . This probability is referred to as probability of
the acoustic model in ASR. The probability P (O) is the probability of an observation and
it is always the same disregarding the instance of W . Thus, this probability term can be
omitted resulting into the following formula for ASR:

Ŵ = arg max
W

P (O|W )P (W ) (3)

2.1.1 ASR system architecture

A typical speech recognition system includes an acoustic feature extractor, an acoustic
model, a language model, a lexicon and a decoder and is presented in figure 1. At the feature
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extractor stage, the audio signal is converted into a feature vector containing important
acoustic information for speech recognition. Using the extracted feature vectors for training
data, the acoustic model estimates phone distribution. The language model models word
distribution from a text corpus. Finally, the decoder searches through all the possible word
sequences to find the most likely one to correspond to the given acoustic data using the
provided language and acoustic probability distributions.

Figure 1: Pipeline of a typical automatic speech recognition system.

The feature extractor in ASR should provide features extracted from speech signal so
that an ASR system can discriminate between similar speech sounds and these features
can generalize well across different speakers and speaking conditions. There are many fea-
ture representations that are used in ASR but the most commonly used are mel-frequency
cepstral coefficient (MFCC) features. ASR feature generation involves many steps of pro-
cessing which we do not cite here (for more information see Dave (2013)).

The language model is a way to signal to the speech recognizer that some particular
word exists in a language and that some sequence of words can occur in a language more
probably than others. We can denote the language model as a way of providing some
context to a speech recognition system. The language model is usually represented as
an n-gram model estimated from a text corpus. The most common language models are
bigram and trigram models where probabilities are calculated for sequences of two or three
words.

The acoustic model is the core component of a speech recognition system. Acoustic
modelling tries finding the statistical representation for the extracted feature vector of a
speech fragment. After the modelling procedure, the acoustic model is defined as a set of
statistical representations for each of the acoustic units that are derived for a language.
These representations are derived based on a big amount of training speech data with the
use of algorithms for statistical modelling. The most common way of statistical modelling
for speech signals are the Hidden Markov Models (HMM).
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The HMM helps to represent speech as a sequence of observations and usually models
a basic unit of speech such as phone or word. HMMs are an extension of Markov Models
with the difference that we are unaware in which state we are currently in. The hidden
states in HMM are usually represented by phones and observations are usually acoustic
features of the speech signal. In addition, the important components of HMM are the tran-
sition probabilities to move from one state to another and the observation likelihoods for a
particular observation to be generated by a state. The scheme of an HMM is presented in
figure 2. The phone P has three subphones for modelling the beginning (Pb), middle (Pm)
and the end (Pe) of a phone with transition probabilities aij and observation likelihoods
bj. More extensive information on HMMs can be found in Poritz (1988).

Figure 2: Illustration of an HMM for a phone.

In the decoding procedure, the decoder searches for the most likely word sequence
given the speech input considering the different types of models available (language model,
acoustic model, pronunciation model). The decoding task is usually performed by dynamic
programming algorithms. A simple algorithm for the decoding problem is the Viterbi
algorithm that finds the most likely sequence of hidden states in the context of hidden
Markov models which could be generated by the observed sequence. Here we present the
basic explanation of the Viterbi algorithm, for more information refer to Forney (1973).

For the illustration of the Viterbi algorithm, the notion of trellis diagram, a two-
dimensional grid for a left-to-right HMM, is usually used where the horizontal axis repre-
sents the time frame and the vertical axis represents the HMM state (see figure 3).

For the functioning of the Viterbi decoding, two different types of information must
be provided: HMM state transition probabilities and emission probability distribution
conditioned on each state. The maximum joint likelihood δi(t) of the partial observation
sequence ot1 at the time t and the corresponding state sequence q1 ending in the state i at
time t is described by the following formula:
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Figure 3: Trellis for Viterbi decoding. The picture is taken from Alhanjouri (2012).

δi(t) = max
q1,q2,...,qt−1

P (ot1, q
t−1
1 , qt = i) (4)

The optimal partial likelihood at the time step t+ 1 for each state j can be recursively
computed as:

δj(t+ 1) = max
i
δi(t)aijbj(ot+1) (5)

where aij is the state transitional probability from the state i to the state j and bj(ot+1)
is the emission probability distribution for the state j given observation sequence ot+1.

To find the best Viterbi path through states after the termination of the computation,
simple backtracking can be used. For the faster computation of the Viterbi algorithm, the
pruning procedure can be used which removes less likely Viterbi paths at each step so they
are not considered in further steps.

2.1.2 ASR evaluation

The performance of an ASR system is usually defined in terms of its word error rate (WER),
i.e. in how many words in the test set a speech recognizer makes mistakes. The WER
score is defined in terms of the Levenshtein distance that measures the difference between
two sequences of words and categorizes errors into three groups: insertions, deletions and
substitutions. For ASR performance evaluation, a hypothesized sequence of words and a
reference sequence of words from a transcription are considered. Insertion error means that
a word was missed in the decoded sequence, deletion error signifies that a word appeared
in the decoded sequence while not appearing in a reference sequence and substitution
error means that a word is different in a decoded sequence in comparison to the reference
sequence. WER score can be calculated by the following formula:

WER =
I +D + S

N
∗ 100% (6)
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where I is the number of insertions, D is the number of deletions, S is the number of
substitutions and N is the total number of evaluated words.

2.2 Neural Networks

Neural networks became very popular in recent years due to breakthrough results in many
different fields including speech recognition. Neural network (NN) is a computing system
inspired by the human brain structure that consists of interconnected neurons organized
into layers which form the network. These layers usually perform various computations
transferring information from one layer to another.

2.2.1 Neuron

The neuron is a basic computation unit of an NN which computes an output based on an
incoming input. The scheme of a neuron is presented in figure 4. The neuron computation
is a weighted sum of products coming from the previous neuron, or input, plus bias if
introduced. Weights of neuron connections are parameters of the NN that can be modified
and which the NN learns during training. Then, neurons of the NN apply the activation
function that usually serves to introduce non-linearity for a final transformation of the
output. Non-linear functions are important since we would like a neuron to learn a non-
linear representation of the data because most data is not linear. There are many different
activation functions applied for NN neurons such as sigmoid, relu, tanh, etc.

Figure 4: A basic scheme of an artificial neuron of NN.

2.2.2 Neural network architecture

The standard architecture of a feed-forward neural network is illustrated in figure 5. A
neural network consists of layers arranged with multiple neurons. The basic architecture of
a feed-forward NN is comprised of an input layer, an output layer and a hidden layer placed
between them. The number of hidden layers can vary based on the desired complexity of
NN. For the so called deep neural network (DNN), the number of hidden layers usually
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starts from two. The connection between layers is done through layer neurons that are
connected to all neurons in a subsequent layer. The input layer is responsible for the
processing of the input data that is fed into the network and transferring it to the following
hidden layers. Each following layer of the NN is highly dependent on the information got
from the previous layer. The output layer does the final transformation of the information
obtained from hidden layers. Performing subsequent neuron computations at each layer
and then calculating the loss of the final layer output compared to the ground truth define
forward propagation step of NN.

Figure 5: Architecture of a feed-forward NN. The picture is taken from Patterson and
Gibson (2017)

2.2.3 Training

The most common way for a neural network to be trained (correct its weights and biases)
is by means of the backpropagation algorithm. Backpropagation is a supervised training
technique that relies on labelled data to backpropagate the error and assign the correct
weights for neuron connections. By having properly defined weights, NN can determine
the reasonable output for a given input.

NN’s weights and biases are at first initialized at random. After forward propagation
step, NN knows the obtained error having compared the output label with the ground
truth label. Having this error, NN can backpropagate it by calculating the gradients which
point out the direction of the error increase. The adjustment of NN weights is done by
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using Gradient Descent optimisation method which goal is to minimize the resulting error
(for more information on Gradient Descent see Ruder (2016)).

2.2.4 Recurrent Neural Networks

Recurrent Neural Network (RNN) is a type of neural networks that are good for modelling
sequential data. For this reason, RNNs are very successful in using in natural language
processing or speech recognition tasks. In comparison to feed-forward neural networks
that do not have any notion of order and consider only a current input instance, RNNs can
remember what has been seen previously in time. RNNs have two sources of input, present
and recent past, which are combined in some extent in order to better describe data.

Figure 6: RNN architecture. The picture is taken from Christopher Olah blog.

The illustration of an RNN is presented in figure 6. As can be seen from the figure, RNN
has a looping mechanism that allows the network to retain information across sequential
input instances. There exist several ways for RNN to memorize information introduced
previously. The most common ways are to use Long Short-Term Memory (LSTM) cells
or Gated Recurrent Units (GRU). These both units have multiple gates that are used for
memorizing the important parts of the input and forgetting unimportant past information.
In figure 7, we present the LSTM cell architecture because it is the RNN cell that we use
in our further experiments.

The LSTM cell can learn long-term dependencies of the data due to its architecture
with three types of gates. Using input, forget and output gates, LSTM cell can remove
or add information to the cell state. More on LSTM and fundamentals of RNNs can be
found in Sherstinsky (2018).

2.3 ASR approaches

2.3.1 Generative approach

The most common approach for ASR is a generative learning approach that uses Gaussian
Mixture Model (GMM) HMM for modelling a representation of the sequential structure of
speech. As we already discussed, the acoustic unit representation is usually modelled by
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Figure 7: LSTM cell architecture. The picture is taken from Christopher Olah blog.

the HMM state. In the case of GMM-HMM, a mixture of Gaussians is used in the HMM
state to model the acoustic unit representation (see figure 8).

Figure 8: Illustration of GMM-HMM for a phone.

GMMs can easily model quite complex distributions and GMM classifiers are highly
effective in speech-related tasks. The GMM-HMM systems are very popular in ASR domain
because they can handle variable-length data which is the characteristic feature of speech.
These systems can achieve good results for speech recognition and became the default
option in speech recognition tasks (Su et al., 2010; Yan et al., 2013).
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2.3.2 Hybrid approach

One of the approaches that is proved to work well in the ASR domain is the combination of
DNNs with HMMs which is called hybrid DNN-HMM. In this system, the variable-length
speech signal is modelled with HMM and emission probabilities of phonemes are modelled
by DNN (see figure 10). For this task, the DNN is trained to estimate the posterior
probability of an HMM state given an observation.

Figure 9: Illustration of DNN-HMM for a phone. The picture is taken from Najafian
(2016).

This framework is widely used and considered to be successful due to HMM‘s ability to
model the sequential property of a speech signal and the strong learning power of DNNs
(Swietojanski et al., 2013; Li et al., 2013; Xue et al., 2014).

2.4 Lexicons in ASR

The lexicon for an ASR system is usually represented as a list of words where for each
entry the orthographic transcription of a word is given with its corresponding transcribed
pronunciation. The words of a lexicon are usually taken from the vocabulary of a text cor-
pus. Pronunciations are commonly composed of elementary units derived for a particular
language.

The lexicon, or pronunciation dictionary, plays an important role in the ASR system
being the link between the acoustic representation for a word and the word output by the
ASR decoder (Adda-Decker and Lamel, 2000). The first task of the lexicon is to specify the
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list of words that will be known by the ASR system and used to model the representations.
Having lexical knowledge helps the ASR system to produce meaningful word sequences.
The second task is to provide some information about word acoustics. This information
serves for building the acoustic model by the ASR system.

The lexicon can be considered as another model involved in the ASR process. This
model is called pronunciation model and defines the probability P (Q|W ) of an acoustic
unit sequence Q given a word W . The ASR formula can be rewritten as follows to consider
possible sequences of acoustic units (pronunciations) Q for a word W given observation O:

Ŵ = arg max
W

∑
Q

P (O|Q)P (Q|W )P (W ) (7)

Words in a lexicon may have multiple pronunciations due to various accents, speech
impediments, phonological phenomena or simply a part of speech. This might imply many
pronunciations for words in a lexicon in order to model context-dependent pronunciation
variation or general speaker characteristics. This can increase the modelling power of
a pronunciation model. However, this must be taken with caution since it can increase
ambiguity for observed sequences. Pronunciations in a lexicon should be as consistent as
possible so that to increase the descriptive power of an acoustic model.

2.4.1 Lexicon generation

Lexicon generation is a separate task in speech processing. The process of lexicon genera-
tion involves vocabulary selection, basic units modelling and pronunciation representation
for each lexicon entry.

The vocabulary selection tasks consider which words existing in a language and what
number of them will be included in the dictionary. The main goal of ASR is to obtain
the maximum possible coverage of the language vocabulary in the developed lexicon. The
lexicon word entries can be extracted from the vocabulary of various already existent text
corpora for a language.

The modelling of the representations suggests choosing elementary acoustic units which
in case of ASR system can be phonemes or sub-word (phone-like) units. The choice of
elementary units is usually motivated by the particular application or language of ASR.

The task of pronunciation creation poses the most problems for lexicon generation
because it requires linguistic knowledge to model such word pronunciations. There exist
several ways of pronunciation modelling. Already existing pronunciations dictionaries for a
language can be a source of these pronunciations but they are quite rare, can be unavailable
for a particular language or built with inconvenient basic acoustic units for ASR. The pro-
nunciations for words in a lexicon can be created manually exploiting linguistic knowledge.
This procedure of lexicon creation is quite time-consuming and prone to have errors and
inconsistencies since the human factor is involved. However, hand-crafted pronunciations
are highly linguistically justified. Alternatively, word pronunciations can be generated au-
tomatically by a pronunciation generation system. The most common way of automatic
pronunciation generation for a lexicon is grapheme-to-phoneme conversion (G2P) (Bisani
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and Ney, 2008; Taylor, 2005; Chen, 2003; Toshniwal and Livescu, 2016). We discuss this
way of lexicon creation in chapter 3 where we provide the related work. Finally, the two
approaches for pronunciation generation can be combined. The pronunciations in a lexicon
can be generated by the automatic pronunciation generation system and then they can be
edited by linguists.
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3 Related Work

The goal of automatic pronunciation generation is not new in the ASR field. Several
methods to get lexicons were proposed for ASR (Svendsen, 2004). There are two main
approaches to automatically obtain pronunciation dictionaries. The first one involves
grapheme-to-phoneme (G2P) conversion and it can usually be considered as a semi-supervised
approach since it relies on some small amount of the initial lexicon provided to G2P model
in order to catch the correct conversions. Another approach is fully unsupervised and aims
to generate a lexicon without any prior information available. Usually, such approaches
focus on the derivation of basic acoustic units and creating pronunciation sequences from
them for words in the vocabulary.

In sections 3.1 and 3.2, we report the most recent and relevant research that was done
in the area of pronunciation generation with supervised and unsupervised methods.

3.1 Semi-supervised lexicon generation

Semi-supervised lexicon generation mostly suggests using G2P models with a small initial
lexicon available so that to generate the full lexicon from it. There exist many approaches
for G2P, however, in this section, we provide the recent research on G2P lexicon generation
that aims to fully generate a lexicon and not only to handle out-of-vocabulary (OOV) words
which is considered as a primary task for G2P systems.

In Goel et al. (2010), the authors exploit the G2P system and a small initial lexicon in
order to derive the full lexicon for ASR training. They use the initial lexicon as a bootstrap
for training a G2P model that uses joint-multigram approach to learn pronunciation rules.
Since no acoustic model is available at this step, they train G2P models to generate the
pronunciations for all remaining words and train the acoustic model on them. The acoustic
model, in turn, gives the set of pronunciations for creating a new dictionary which is used for
further retraining of G2P. The process of training both acoustic and G2P model continues
iteratively until the best performing acoustic model is obtained.

In Kantor and Hasegawa-Johnson (2011), the authors model each context-dependent
phoneme as an HMM and treat letters as observations generated by the HMM. Then, the
model is iteratively trained with the EM algorithm. The decoding is done by the Viterbi
algorithm. The advantage of the proposed method is that no mapping between letters and
phonemes is needed which means no need in linguistic knowledge. This work shows that
there still remains a lot of lexical ambiguity with lexicons generated with this approach for
conversational speech.

In Razavi and Doss (2015), the authors propose the novel approach of pronunciation
generation based on the automatic derivation of subword units. The subword units are
derived from the clustered-context dependent units in a grapheme-based system using a
maximum-likelihood criterion. Then, Kullback-Leibler divergence HMM learns the pro-
nunciations. This approach shows a significant reduction in word error rate compared
to other G2P systems and can help to reduce the need in expert knowledge for lexicon
creation.
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The main problem of methods that use G2P for discovering correct pronunciations
of words is that they seem to work only for languages with a strong correlation between
pronunciations and graphic writing of words such as German or Czech. For languages where
graphemes do not necessarily correspond to some particular pronunciations and there exist
a lot of deviations in pronunciations in general such as English or Arabic, it leads to a
problem for G2P to get correct relations between graphemes and phonemes which results
in poor lexicon generation systems. Thus, methods using G2P proves to be very efficient
for languages with strong grapheme-phoneme relation but other languages will be provided
with an unreliable lexicon in this case. Based on these considerations, we do not want to
explore G2P-related approaches for data-driven pronunciation generation since we would
like to be as less language dependent as possible in the task of pronunciation dictionary
creation.

3.2 Unsupervised lexicon generation

Another approach of automatic pronunciation generation is unsupervised and fully relies
on provided audio data. It can exploit different strategies for lexicon generation but the
main idea is to use audio data and transcriptions as the only source for pronunciation
dictionary generation.

There are not so many unsupervised methods in the literature. One of them is still
about G2P conversions (Hartmann et al., 2013). The authors in their work used grapheme-
based recognition system in order to determine the minimal acoustic units and to generate
the pronunciation dictionary. Via spectral clustering approach, the context-dependent
graphemes are clustered into the acoustic units. The first draft of the lexicon is derived from
this clustering. Based on this lexicon, a set of context-independent models (one GMM per
grapheme) are trained. The output of grapheme recognition is considered as pronunciation
hypothesis and becomes a training example for statistical machine translation grapheme-
to-grapheme system (lexicon pronunciation is used as a source language and a hypothesis is
used as a target language). As a scoring method they proposed to generate a new dictionary
using the grapheme-to-grapheme model, do forced alignment of the training data using
the context-independent models and measure the average effect on the likelihood of each
sentence. As results, they report the relative reduction in WER in comparison to baseline
grapheme-based systems.

Another method completely relies on audio data and not on word transcriptions, namely
graphemes (Takahashi et al., 2016). The approach the authors invented is based on detect-
ing subword units, or automatic acoustic elements (AAEs) that can further comprise the
pronunciations for words. The initial step is to cluster the acoustic space in order to deter-
mine the initial AAEs. Then they perform iterative training of GMM that jointly learns
to model the dictionary and AAEs. Given AAEs, the model tries to update the dictionary
and on the next step, given a new dictionary, it tries to update AAEs. After some number
of iterations, the authors switch from GMM to DNN training with the same iterative pro-
cedure. At each stage, the pronunciations are got with the help of k-dimensional Viterbi
approximation (Naghibi et al., 2013) which is based on the k-dimensional Viterbi algorithm
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(Gerber et al., 2011). This approach shows to outperform known phoneme-based systems
with handcrafted dictionaries.

Figure 10: Illustration of the framework proposed by Takahashi et al. (2016). The picture
is taken from Takahashi et al. (2016).

These approaches for unsupervised lexicon generation aimed to discover minimal acous-
tic units and generate lexicon entries utilizing determined units. The presented methods
can generate a lexicon completely from scratch from provided audio data and transcrip-
tions. For this reason, these works need some starting point that does initial modelling of
the data which, in fact, very weak model since it does not have any supervision.

In this research, we would like to explore if data-driven pronunciations can improve the
quality of ASR in comparison to linguistically motivated pronunciations. To explore this,
the completely new data-driven approach for pronunciation generation is proposed that
aims to improve the existent lexicon and, to our knowledge, has not been explored in the
literature so far.

The similarities of our new approach for pronunciation generation in comparison to
introduced unsupervised research are that our new approach:

- is also data-driven because it relies on acoustic information of the data for pronunci-
ation generation;

- uses no initial lexicon for bootstrapping;

- aims to generate a full lexicon and not just a part of it for ASR purposes.

In contrast to related work on unsupervised pronunciation generation, our new ap-
proach:

- has an objective of regeneration of an existent ASR dictionary aiming at improving
the ASR performance by introducing a better lexicon;

- does not discover a new phoneme set and works with the existing one;

- considers more than one pronunciation to be generated for ASR lexicon while all
related works tried to find one best pronunciation for a word in a lexicon.
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4 Research Outline

The goal of this research is to explore the area of data-driven pronunciation generation.
We aim to introduce an experimental procedure to discover the method to determine which
pronunciations and how many of them should be written into the pronunciation dictionary
for a word.

In general, our approach is based on pronunciation clustering as a source of pronunci-
ation variants which can serve as good lexicon entries for a word. For lexicon generation,
we propose to completely rely on data and to use a clustering algorithm to decide whether
a word has several pronunciation variants, which they are and how many of them appear
in the data.

The motivation for this approach is that the differences in pronunciations for a word
should be reflected in the features extracted from the audio segment for this word. The
more similar features of the same word are to each other, the more similar pronunciations
of these word utterances are. If we have several utterances for the same word, we can use
acoustic features for the word speech segments to cluster them into different pronunciations.

In this chapter, we discuss the whole pipeline of the thesis research. In section 4.1,
we discuss the proposed approach of data-driven pronunciation generation. Section 4.2
provides information on experiment design considering the systems for comparison and
evaluation criteria.

4.1 Proposed approach

The pipeline of the proposed approach is illustrated in figure 11. The main idea behind
the approach that we would like to explore is to use a clustering procedure for the pronun-
ciation variant identification directly from audio features. After the variants are clustered,
the simple Viterbi decoding is used in order to obtain phoneme sequences that denote
different pronunciation variants. Finally, decoded pronunciations can be written into an
ASR lexicon. Further in this section, we discuss each component of the proposed system
in more details.

4.1.1 Pronunciation clustering

Clustering, or cluster analysis, is a task of grouping data points in groups, or clusters,
based on their feature similarity. The clustering is done in a way that data points that are
more similar to each other in some sense are grouped together. Clustering is a technique
of statistical data analysis and belongs to the area of unsupervised machine learning where
no labelled data is introduced to an algorithm.

In our task, we would like to cluster data points corresponding to features of different
utterances of a particular word. As a result, we would like to see clusters of different
pronunciation variants for a word. The main goal at this stage is to derive the number
of pronunciation clusters automatically for each word without having it predefined. We
would like to detect the number of clusters per word based on statistics and not to use
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Figure 11: The pipeline for the proposed approach that consists of feature extraction,
clustering procedure and decoding.

some constant number of clusters since the number of pronunciations can differ from word
to word.
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4.1.2 Feature extraction

For the pronunciation clustering with a machine learning algorithm, we need to have fea-
tures of some particular dimensionality for all word utterances in the corpus. In ASR,
there are several ways of feature extraction. The most frequently used are MFCC, PLP
and LPC. MFCC is a prevalent way of feature extraction for speech recognition purposes.
MFCC is a representation of the real cepstrum of the Fast Fourier Transform of a windowed
short-time signal. The main problem of MFCC features for a clustering algorithm is that
an audio signal gets windowed by a fixed length (see figure 12). Taking into account the
length variability in speech (even the same word can be pronounced by the same speaker in
a different time), it results in a variable-length feature vector after applying all transforms.

Figure 12: Illustration of sliding window that is used for feature extraction in ASR. The
picture is taken from (Dereymaeker et al., 2017).

Thus, we propose a trick for feature extraction step so that feature vectors could be used
for clustering. The main idea that we would like to preserve as much of acoustic information
as possible but at the same time to get feature vectors of the same dimensionality. One of
the existing ways of bringing variable-length feature vectors to fixed-dimensional ones in
the speech domain is to exploit acoustic word embeddings (AWE).

AWE is a fixed-dimensional vector representation of a spoken word segment. Mainly,
AWEs are generated based on acoustic information of a word with some additional infor-
mation involved. There are many approaches for AWEs training but the most common is
the one that uses MFCC features as the source of acoustic information about a speech word
segment and tries to learn the place of embeddings in the AWE space by discriminating
different word types1. Thus, the task of AWE training is to place embeddings for words
of the same word type closer to each other while embeddings for words of different word
types are further from each other in the AWE space.

Hence, we can extract AWEs for all words in a corpus and use them as features for a
clustering algorithm since they are no longer of variable-length. Then, for each word in a
corpus we can perform pronunciation clustering using an unsupervised machine learning
algorithm.

1By word types, we mean different words (cat vs. dog).
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4.1.3 Decoding

After the clustering is performed, we get the clusters comprised of acoustically similar
word utterances, namely pronunciation variants, for each word in a corpus. Since our main
goal is to generate the ASR lexicon, at this point, we would like to descend from a vague
category of clustered pronunciation variant to a phonetic sequence that corresponds to
this detected pronunciation variant. For converting a speech segment into a pronunciation
sequence, the decoding procedure of ASR can be used.

Decoding in ASR is the process of finding the most likely sequence of phonemes for a
particular speech fragment. The most known decoding algorithm is the Viterbi algorithm
which is a dynamic programming algorithm that finds the most likely sequence of hidden
states for an observed sequence in the context of HMM. The Viterbi algorithm requires
several types of probabilities such as the initial probability for a phoneme to be in word-
initial position, the transition probability for a phoneme to transit to another phoneme
and the emission probability for a phoneme to occur given this audio fragment (see section
2.1.1 for more information on Viterbi algorithm).

Applying Viterbi decoding for all words in a corpus gives us decoded sequences with
which we can operate at post-clustering step. Having a pronunciation sequence for each
word utterance in a cluster provides us with the information we can put into a potential
ASR lexicon. Since we believe that we can successfully cluster word pronunciations, the
decoded sequences for words in a cluster should be mostly similar. Thus, we can take the
most frequent decoded sequence per cluster in order to decide which pronunciation corre-
sponds to each cluster. After all these steps, we have some number of decoded sequences
corresponding to detected clusters, or different pronunciation variants, that we would like
to write into a pronunciation dictionary.

This approach generates a fully data-driven lexicon because at each step it considers
information derived from data in contrast to the widely used hand-crafted pronunciation
dictionaries that are created by linguists.

4.2 Experiment design

The experiment design for this research needs to consider small experiments for each com-
ponent of the proposed approach. The objectives of these experiments are:

- to compare the quality of the generated data-driven lexicon to other lexicons of
interest;

- to compare different clustering algorithms for the task of pronunciation clustering;

- to find the most appropriate way to obtain acoustic features for clustering.

In order to evaluate the quality of the obtained data-driven lexicon, we propose to train
and compare the ASR performance for the data-driven lexicon and the hand-crafted one in
terms of their WER. As an ultimate goal, we see outperforming the hand-crafted dictionary.
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However, we understand that reaching the performance of the hand-crafted dictionary is a
very difficult task. Nevertheless, we are interested in seeing if we can at least approach the
performance of hand-crafted dictionary with the lexicon generated completely from data.

In this regard, we define the hand-crafted dictionary as a benchmark lexicon. For esti-
mating if we can perform better than some simple approaches we also need to define some
baseline lexicons. As baseline models, we choose ones that exploit sequences decoded by
the Viterbi algorithm. For each word in a corpus, we have several pronunciation sequences
corresponding to decoded word utterances. We consider the lexicon in which for each word
we write the three most frequent decoded sequences to be a quite strong baseline for our
experiment.

In view of some additional experiment, we would like to introduce some other baseline
lexicons. They are comparable to the already introduced one but include either only one the
most frequent pronunciation or all pronunciations decoded by the Viterbi algorithm. These
baselines are interesting to consider because it is unclear what number of pronunciations
is the most beneficial to include into the ASR pronunciation dictionary. This kind of
experiment can reveal if writing just one pronunciation per word is enough or the more
pronunciations we include in the lexicon, the better the ASR performance is. At this time
we lack evidence that having multiple pronunciations for a word in a dictionary benefits
ASR.

In order to obtain the best possible clustering of different pronunciations, the examina-
tion of different clustering algorithms can be done. Moreover, we would like to investigate
different strategies of feature extraction for a clustering algorithm and see if we can improve
a simple approach of AWEs extraction for pronunciation differentiation task since the main
approach for AWE modelling works with word differentiation. The main idea is that the
better AWEs represent acoustics of a word, the better clustering will perform. The goal
of these experiments is to get the best possible result of these two steps of data-driven
pronunciation generation.

4.2.1 Experiment pipeline

Thus, the whole pipeline of the research can be described as follows:

1. We experiment with fixed-dimensional feature extraction for clustering algorithm
trying different approaches for improving the discriminative power for pronunciations
of AWEs.

2. We cluster obtained AWEs for each word in a corpus with different unsupervised
clustering algorithms in order to discover the most suitable one for the task of pro-
nunciation clustering.

3. We decode the whole corpus with the Viterbi algorithm so to get a pronunciation
sequence for each word. These decodings are used in the final lexicon generation
step.
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4. We generate several lexicons (baseline lexicons and data-driven lexicons) and train
the ASR system using these lexicons in order to compare their WER scores between
each other and with the hand-crafted lexicon performance.

In order to compare different lexicon generation models, we train the ASR model on the
corpus of multi accented speech. We choose this type of corpus because we would like to
test pronunciation generation on some data that has many pronunciations of a particular
word due to some variation in the pronunciation of different speakers.

The training of ASR models is done using Kaldi (Povey et al., 2011), widely known
speech recognition toolkit. In our experiment, we train the most recently introduced neural
network model in this toolkit that uses TDNN-f layers (Povey et al., 2018) in order to have
up-to-date and reliable results for our experiments.

The whole experiment helps to understand if we can improve over hand-crafted dic-
tionary or the linguistic knowledge still outperforms the statistical approaches. Moreover,
based on experiment results, we can conclude whether the number of pronunciations that
are written into a dictionary should be statistically modelled.
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5 Data

For our experiment on data-driven pronunciation generation for improving ASR perfor-
mance, we have to choose the appropriate corpus so that we could witness the improve-
ment easily. Since the most benefited from data-driven pronunciation generation will be
multi pronouncing words, we would like to choose the corpus with as many pronunciations
per word in the data as possible. That is why, as a good choice for our pronunciation
generation task, we consider a corpus with a lot of accented speech and which includes
many dialects. As a language for the whole experiment, we propose English.

There exist several corpora for English that include many different dialects. First of
them is CSTR VCTK Corpus2, English Multi-speaker Corpus for CSTR Voice Cloning
Toolkit, that includes speech data uttered by English native speakers with various accents
(Veaux et al., 2017). Each of 109 speakers reads about 400 sentences selected from news-
papers. We consider the size of the corpus to be insufficient for the task of pronunciation
generation.

Second possible corpus is Common Voice3 by Mozilla. It is an open-source, multi-
language dataset of recorded speech. The recording can be done by anyone following the
instructions on the website. Common Voice developed quite quickly and already reached
1 000 hours of English speech having almost 40 000 different speakers. However, it is a new
corpus for which no baselines for the comparison exist, especially in Kaldi toolkit4.

The last corpus with accented speech is VoxForge5. This corpus has a sufficient amount
of data, namely ∼110 hours of speech, available open-source and Kaldi has a recipe for
this corpus providing a baseline for the comparison.

This chapter is devoted to the data overview. In section 5.1, we discuss the VoxForge
data and provide some statistics on it. Section 5.2 provides information on the data
processing that we used for the experiments.

5.1 Data overview

For all our experiments we use VoxForge corpus of audio recordings. VoxForge is an open-
source project that collects the transcribed speech data that later can be used for free
and open-source ASR toolkits such as HTK6, Kaldi, CMU Sphinx7, etc. The VoxForge
data is comprised of audios that were recorded by volunteers in many different languages.
Volunteers record these audios directly on their computers following instructions that can
be found on the main project web site.

The motivation behind choosing the VoxForge corpus is that the improvement of a
pronunciation generation system will be more noticeable for the corpus where we definitely

2https://datashare.is.ed.ac.uk/handle/10283/2651
3https://voice.mozilla.org/en
4https://kaldi-asr.org/
5http://www.voxforge.org
6http://htk.eng.cam.ac.uk/
7https://cmusphinx.github.io/
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can find multiple pronunciations for a big number of words in the corpus. Multiple pro-
nunciations are not frequent in ASR lexicons, only few words can be found in the lexicon
that have multiple pronunciations and these lexicons are usually hand-crafted with only
linguistically motivated pronunciations included. The corpus that includes a lot of ac-
cented speech is the best choice for testing if we can actually improve the ASR system by
introducing acoustically motivated pronunciations in the lexicon entries. In our research,
we use English VoxForge data which includes audio recordings of people of different English
dialects.

In table 1, we cite the main statistics of the VoxForge corpus. The English data
contains 106.7 hours of speech recordings in total. For the ASR experiments, we split data
into training and testing sets following Kaldi recipe for VoxForge, having 106.1 hours in
the train set and 0.6 hours in the test set. We use the training set for all of our following
experiments, even unrelated to ASR training, and for ASR training itself. The testing
data set was used only for the evaluation of the ASR system and is never used in any
other experiment that we conducted. After the data processing of the training set that
is described in section 5.2, we estimated the size of the corpus in words to be equal to
538 622, having 6 725 unique words.

Total Train Test

# hours 106.7 106.1 0.6
# utterances 76 551 76 179 372
# speakers 2 890 2 870 20
# words 541 878 538 622 3 526
# unique words 6 758 6 725 1 232

Table 1: The number of hours, utterances, speakers, words and unique words for total
VoxForge corpus and its train and test sets.

In figure 13, we showed statistics across the speakers who did recordings for the Vox-
Forge corpus. From the figure, we can see that the VoxForge corpus is biased towards
adult male speech and it lacks recordings by other age ranges and female speech. In the
VoxForge corpus, approximately ten different accents are represented with prevailing di-
alect being American English. We consider the problem of under-representation of different
ages, genders and dialects to be acceptable since there are not many other corpora that
have equal representation of different groups and the amount of other dialects and ages in
the VoxForge corpus is quite substantial.

5.2 Data processing

The ASR lexicon is represented by a list of words with their pronunciation equivalents.
The task of pronunciation generation implies pronunciation derivation for each word of
the vocabulary. As was discussed in section 4.1, for our approach we would like to cluster
words based on their acoustics in order to find clusters of pronunciations and, then, to
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Figure 13: The statistics for the VoxForge corpus in terms of age, gender and dialect of
speakers. X axis is log scaled.

detect the most appropriate phonetic sequence for each pronunciation cluster with the
Viterbi algorithm. To perform such clustering, we have to descend to the word level and
operate with words instead of utterances.

There exist several spoken isolated word corpora such as TIDIGITS8, TI 46-Word9,
The Nationwide speech Project10, etc. However, none of these corpora serves our purpose
of having various accents and dialects in its data and they are mostly too small or have
limited vocabulary which is not suitable for our goals.

Thus, sticking to VoxForge, which is an utterance-based corpus, requires to find the
way of extracting word-level features from utterance-level ones. This can be achieved with
the forced alignment of utterances and, then, cutting utterance-based features into words
following the obtained alignments.

8https://catalog.ldc.upenn.edu/LDC93S10
9https://catalog.ldc.upenn.edu/LDC93S9

10https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060775
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5.2.1 Phone alignment

Forced alignment refers to the process where audio transcriptions are aligned to audio
recordings in order to get phone level segmentation, namely at which particular time some
phone occurs in the audio segment. This process is different from ASR since ASR derives
the particular phone for some speech segment whereas forced alignment already possesses
the particular phone sequence and needs only to match its phones with the proper speech
segments.

In order to align the data, we need to obtain a reliable, in terms of phone alignments,
model. For this purpose, we train the triphone ASR model using Kaldi toolkit. For more
robust results, we train it in a consecutive manner starting with the monophone GMM
model11 on a subset of 1 000 utterances of the data, proceeding with the triphone GMM
model on delta + delta-delta features12 followed by the triphone GMM model with LDA13

+ MLLT14 feature transforms15 and finishing with the triphone GMM model on LDA +
MLLT features with applying SAT16 17. For the training, the CMU pronunciation dictionary
and phoneme set were used.

This final model we use to align VoxForge utterances to phones. The quality of triphone
GMM model is considered to be reasonable for obtaining word alignments and we do not
need to train a more advanced ASR model. The phone sequence for an utterance tran-
scription is also obtained by this final ASR model. The quality of phone recognition does
not matter for us at this stage since we are interested more in detecting word boundaries.

For obtaining phone alignments from the GMM model, we use the internal Kaldi
ali-to-phone script18 that takes the trained model and archives of aligned data that the
model produced at the alignment step and writes down the phone alignments in human-
readable format. The result is the audio file name with the corresponding phones and their
starting and ending times.

5.2.2 Word alignment

Our goal is to align utterances to word transcripts and not to phones. Thus, following the
format of the obtained alignments, we have to get words that are present in each audio
file. These words can be extracted from transcriptions files provided in the corpus with
the simple custom Python script.

The language preparation scripts in Kaldi convert each phone from a phoneme set to
the position-dependent version of this phone by attaching one of B, I, E and S suffixes.
These suffixes mark the position of the phone in a word. For the phone with the suffix B,

11https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_mono.sh
12https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_deltas.sh
13Linear Discriminative Analysis
14Maximum Likelihood Linear Transform
15https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_lda_mllt.sh
16Speaker Adaptive Training
17https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_sat.sh
18https://github.com/kaldi-asr/kaldi/blob/master/src/bin/ali-to-phones.cc
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the phone is in word-initial position. Suffix E means that the phone is in word-final
position. If the phone is in word-internal position, it is marked with suffix I. Suffix S
denotes singleton words. This is the Kaldi language processing that happens before any
model training and, then, models operate with this extended position-dependent phoneme
set. Thus, all phone alignments that we got at the previous step are done with these
position-dependent phones.

These position-dependent phones allow us to easily detect word boundaries. By a
simple custom Python script, we detect E and S phones that denote the end of a word
and extract word-level alignments based on these word boundaries. Thus, we obtain time
intervals that correspond to a separate word and, with the help of files with words per
each audio file, we can get actual word alignments. The final format of these word-level
alignments is as follows: for each audio file, we have corresponding time interval for each
word in the transcription of this file.

5.2.3 Word-based features

The goal of our data-processing is to extract word-level features, namely MFCC features.
As far as we have time intervals for words, we can cut utterance-based MFCC features
into words based on these time intervals. Thus, we need to obtain utterance-based MFCC
features which can be done with internal Kaldi script19. After extraction, all features
are stored in the archive, that is why we need to use the Kaldi subset-feats script20 to
convert them in the human-readable format.

At last, we can easily cut these utterance-based features by obtained word beginning
and end times in order to get word-based MFCC features. This is also done with a simple
custom script.

Word-level MFCC feature extraction is the only data processing we did for our exper-
iments. These word-level features are used for the pronunciation clustering experiment
which will be discussed in chapter 7 and for the decoding part of lexicon generation which
we will consider in chapter 8. For the final ASR performance comparison discussed in chap-
ter 9, we use original utterance-based MFCC features without any additional processing.

19https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/make_mfcc.sh
20https://github.com/kaldi-asr/kaldi/blob/master/src/featbin/subset-feats.cc
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6 Feature Extraction

The data-driven pronunciation generation task involves the step of pronunciation detection
in data and the step of writing detected pronunciations into a dictionary. For pronunciation
derivation from data, we proposed to exploit the clustering analysis in order to detect differ-
ent word pronunciations. The task for pronunciation clustering is to group word utterances
into clusters corresponding to different pronunciations of a word. For clustering different
word pronunciations, we explore different unsupervised machine learning algorithms that
can identify internal data structure using features extracted from data.

In this chapter, we discuss the feature extraction step for pronunciation clustering and
the following chapter is devoted to clustering of pronunciation variants. In section 6.1 of
this chapter, we discuss the problem of MFCC features for machine learning algorithms.
In section 6.2, we review related work for feature extraction that can be applied for our
purpose of pronunciation clustering, compare them with each other and define the approach
that we chose for our experiments. Section 6.3 describes in detail the feature extraction
procedure that we use for a clustering algorithm, the conducted AWE experiments and
their results. In section 6.4, we outline some problems of a chosen feature extraction
method for pronunciation clustering and propose the extension of the method for better
feature extraction.

6.1 Feature extraction problem

In order to cluster pronunciations so that we could distinguish different pronunciations
for a word, we need to get proper features that we can feed to a clustering algorithm.
The main problem that we face is that speech fragments are usually different in time
lengths. For example, for different speakers exactly the same word can take different
time to pronounce (measured in milliseconds). Even pronouncing the same word several
times for one particular speaker can be different in length. The common features that are
used for speech-related computational tasks, such as MFCC or PLP (more information on
these feature extraction techniques can be found in Dave (2013)), usually involve a sliding
window over the whole speech input which results in variable-length feature vectors.

For the task of pronunciation clustering, having fixed-length features is very important
since it involves standard machine learning techniques that cannot work on variable-length
input. In order to get fixed-length feature vectors for variable-length audio segments, we
researched the field of acoustic word embeddings (AWEs), which task is to map the variable-
length input onto a fixed-dimensional space and to preserve the acoustic information of
these inputs.

6.2 AWE review

Acoustic Word Embeddings (AWEs) are a fixed-dimensional representation of a speech
signal. This idea was inspired by the textual word embeddings. In comparison to original
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word embeddings that for semantically similar words try to create similar vector represen-
tations, AWEs aim not at semantical similarity but acoustic similarity (see figure 14). The
task of AWE space is to represent acoustically similar word segments of speech in such a
way that similarly sounding utterances are clustered together. Example of the AWE space
is illustrated in figure 15.

Figure 14: The process of AWE space creation. The picture is taken from Livescu

Figure 15: Illustration of AWE space. The picture is taken from Settle and Livescu (2016)

6.2.1 Research overview

Some investigations have already been done in the field of AWEs and quite promising
results have been obtained. In this section, we review some prominent works in the field
of AWEs and, where possible, compare their performance and define the method that we
want to explore for our task of pronunciation clustering.

DTW approach

In Kamper et al. (2014), the authors approach quite a similar task to that we want to
investigate. They worked in the field of grouping unlabelled acoustic word tokens according
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to their type (the word cat vs. the word dog). For such grouping, they needed fixed-
dimensional acoustic features. They proposed a new approach for embedding a variable-
length segment in a fixed-dimensional space. Their task was to find a mapping function
which maps a variable-length segment to a high-dimensional space so that shorter distance
in this resulting space corresponds to the greater similarity between two speech segments.

For measuring the similarity between two speech segments of different lengths, dynamic
time warping (DTW) is usually exploited. However, having fixed-dimensional embeddings
are more useful if we need any further data modelling. Given two frame-level acoustic
feature vectors (a test vector and a vector from a reference set), the DTW alignment cost
is calculated. Thus, for each test vector they constructed a reference vector that consists
of the DTW cost values for each vector from a reference set. After applying dimensionality
reduction to this reference vector, they got the desired fixed-dimensional embedding. It
was one of the first attempts to extract AWEs and they got quite sufficient results.

CNN approach
In Bengio and Heigold (2014), the authors set the goal of revisiting the basic ASR

architecture and replaced it with a fully data-driven approach based on deep neural net-
work. This approach does not require any linguistic knowledge for lexicon and phonetic
set description. The authors followed the intuition that for humans it is easier to segment
acoustic sequences into words instead of phonemes and perceive them this way. Thus,
they propose to rethink the ASR in terms of word probability given the acoustic evidence.
Then, this model can be easily used in combination with classical decoding after adding a
particular lattice re-scorer.

Figure 16: Deep architecture that was used to train acoustic word embeddings by Bengio
and Heigold (2014). The picture is taken from Bengio and Heigold (2014).

As word input features, the authors used a bag of letter-n-grams where all possible
combinations for the start and the end of a word were specified. To train the mapping
between letter-n-gram word representation and the actual acoustic word embedding, the
authors proposed the following architecture (illustrated in figure 16). The deep convolution
network learns the dependence between acoustic sequence and posterior probability over
words. Two deep neural networks return word embeddings of the same size that is returned
by the convolution network given the letter-n-gram word representation. One of these two
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networks is fed with the word that is represented by the acoustic sequence that comes into
the convolution network. Another neural network gets the word of the different word type
as the first network. Both these networks share parameters with each other. The whole
model is trained by minimizing the triplet ranking loss where the margin parameter denotes
the desired distance between different word types in the embedding space and should be
selected. Training of this model moves letter-n-gram representation near the acoustic word
representation. The authors even report small improvement in WER for speech recognition
task if this approach is used in the combination with the lattice re-scorer.

Figure 17: Siamese CNN for obtaining acoustic word embeddings from padded speech
input used by Kamper et al. (2016). The picture is taken from Kamper et al. (2016).

In Kamper et al. (2016), the authors tried to discriminate between words directly in
the derived embedding space. They also relied on a function that maps the variable-length
segment to the fixed-dimensional space. Their approach involves Siamese convolutional
neural network which was trained with the acoustic word pairs. This Siamese network
(Bromley et al., 1994) is represented as a pair of tied networks, each of which gets the
frame-level feature vector and produces the word embedding (see figure 17). The training
proceeds due to a hinge loss (Gentile and Warmuth, 1999) that serves to separate different
words by some margin while the network tries to maximize this distance between different
word types. Thus, the minimum loss corresponds to closer distance for word pairs of the
same type and bigger distance for word pairs of different types in the embedded space.
Since CNN requires fixed-dimensional input, the authors zero-padded word segments to
the same length that is equal to the longest word segment in the training data. To alleviate
the effect of padding, convolutional and pooling layers were used.

In comparison to the other known CNN approaches, the Kamper et al. (2016) approach
shows much better results with the hinge loss function. Moreover, the authors point that
DTW technique shows to have worse results in comparison to their approach and is slower
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to compute. They also claim that paired supervision can generalize to unseen words and
is suitable for low-resource languages.

RNN approach
In Settle and Livescu (2016), the authors explored the field of AWEs and proposed a new

discriminative embedding model based on a recurrent neural network. An acoustic word
embedding is represented as a function that takes a frame-level feature vector as an input
and outputs the fixed-dimensional vector representation of a segment. The embedding
model in their setup consists of a deep LSTM RNN with some number of stacked layers
and final fully-connected layer (see figure 18). The fully-connected layer serves as a useful
transformation that improves word representation.

Figure 18: RNN architecture for obtaining acoustic word embeddings used by Settle and
Livescu (2016). The picture is taken from Settle and Livescu (2016).

Siamese networks were trained with weak supervision in the form of segment pairs.
The network gets three input segments: the anchor segment, the segment with the same
to anchor label and the segment with the different to anchor label. The network is trained
using ”cos-hinge” loss. The authors also experimented with the way of sampling the
examples of the different label. They proposed the two-step non-uniform sampling which
targets pairs that violate margin constraint of the loss. This approach not only helps to
speed up the training but also to obtain better results in comparison to uniform sampling.

The authors claim that their embedding approach significantly outperforms DTW as
well as other known CNN approaches on word discrimination related tasks. The main
advantage of the Siamese RNN training setting is that it is quite successful in distinguishing
of different pronunciations since it has better relative distances between word clusters with
similar and dissimilar pronunciations.
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In Chung et al. (2016), the authors were also interested in the representation of variable-
length audio segments with fixed-dimensional vectors. As the main domain of their re-
search, they saw query-by-example Spoken Term Detection. They proposed an unsuper-
vised setup which employs a Sequence-to-sequence Autoencoder since it does not take large
amount of training data. Autoencoders (Liou et al., 2008) proved to be efficient for ex-
tracting representations but it needs a fixed-dimensional input which is not applicable to
the audio input. This limitation of autoencoder was solved by introducing sequence-to-
sequence autoencoders.

Figure 19: Sequence-to-sequence Autoencoder (RNN Encoder and RNN Decoder) for ob-
taining acoustic word embeddings used by Chung et al. (2016). The picture is taken from
Chung et al. (2016).

In the research, they used the RNN encoder-decoder system to learn audio embeddings.
Figure 19 shows the proposed architecture. The encoder RNN gets the input segment and
updates the hidden vector which turns out to be a learned representation. The decoder
RNN gets this learned representation and generates the output which should be as similar
to the initial input sequence as possible. Thus, encoder and decoder are jointly trained
by minimizing the reconstruction loss which is measured by the mean squared error. To
learn more robust embeddings, the authors used the denoising sequence-to-sequence au-
toencoder: some noise was added to the input to better learn the internal structure of
features.

The experiments they conducted are not comparable to the previous works in this field
and, in our opinion, too local and not large-scale. However, they claim that their approach
outputs good vector representations that catch the phonemic similarities and differences
and can be used in real-world applications.

In Chen et al. (2015), the authors also tried to explore the field of fixed-dimensional
AWE. Their primary motivation and application lie in the domain of detecting user-
specified keywords for which query-by-example technique was the most appropriate. In
their approach, the LSTM neural network is trained with word label targets. In their
2-layer LSTM, given the variable-length audio, the representation of the audio segment is
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got by using the hidden state vector from the second LSTM layer. As each hidden vector
at the particular time encodes the information up to this particular time, they decided
not to store all state vectors. They created a fixed-length representation by choosing some
number of last state vectors. If the length of a segment occurs to be smaller than the
chosen value for a fixed-dimensional representation, they pad the state vectors with zeros
in front.

From the experiments that they have conducted specifically for their task, it is hard
to evaluate the quality of the obtained representations, e.g. if the distance between the
similarly pronounced words is smaller than of those with dissimilar pronunciations.

Some other approaches to AWE extraction were proposed for various tasks such as
Zweig and Nguyen (2009), Maas et al. (2012), Voinea et al. (2014), Levin et al. (2015).
However, they have results that are hard to compare with the rest of investigations and to
interpret in terms of our needs.

Thus, the most successful results were obtained by using Siamese recurrent neural
networks. In general, the RNN approach seems to be more suitable for catching the
sequential information of audio data in comparison to the CNN approach. Moreover,
the ability of RNNs to model sequential data can be beneficial for distinguishing word
pronunciations. In Settle and Livescu (2016), they claim that their approach outperforms
the well-known DTW technique and also other CNN approaches proposed in the literature.
Other RNN approaches Chung et al. (2016), Chen et al. (2015) also look promising but
they lack sufficient evaluation and testing in terms of word embedding extraction quality.
That is why, we choose to explore Settle and Livescu (2016) approach for our experiments
of feature extraction. In the following section, we investigate Settle and Livescu (2016)
approach and explore how it performs in our word embeddings extraction and clustering
tasks.

6.3 AWE extraction

In the pronunciation clustering task, we need to train the clustering algorithm to distinguish
between different pronunciations of the same word if these different pronunciations exist.
The training of such an algorithm needs a fixed-dimensional input. As has already been
discussed at the beginning of this chapter, in case of speech data we lack this kind of
fixed-dimensional features. Instead, we have audio segments which are of variable lengths.
In order to extract fixed-dimensional feature vectors, we refer to Settle and Livescu (2016)
and use their approach of AWE extraction. The approach that the authors used in Settle
and Livescu (2016) was discussed in the previous section on AWE extraction methods
overview, and in this section we cite technical details applicable to our task and data.

6.3.1 Data handling

We operate with the data that we got at the data preparation step discussed in section 5.2,
namely MFCC features for word segments obtained from aligned utterance-based acoustic
data. The corpus that we use in our investigation is different from what the authors of
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Settle and Livescu (2016) used (VoxForge vs. Switchboard), thus, we need the particular
data set construction for our data so that we can use the Siamese RNN training proposed
in Settle and Livescu (2016).

First of all, we need to split the data into train and development sets. In Settle and
Livescu (2016), the open-source data that they used was already split into train and de-
velopment sets, 10k and 11k respectively. We have significantly more data in our corpus.
After cleaning and processing the data at the data preparation step, we got 538 620 word
utterances. We use the same strategy of almost equal splitting of the data into train and
test sets since we find it justified for the model evaluation we do, which we discuss in
section 6.3.3.

The main peculiarity of data processing for our training is data sampling. For the
Siamese training, we need to have samples of three words: anchor, same and different
words. Further, we explain these sampled words:

anchor a randomly chosen word utterance from a training set in a batch (for example, a
word utterance corresponding to the word cat)

same a word utterance of the same word type as the chosen anchor word (for example,
another word utterance corresponding to the word cat)

diff a word utterance of a different word type as the chosen anchor word (for example, a
word utterance corresponding to the word dog)

In the Siamese network training, these sampled words are arranged as anchor-same and
anchor-diff pairs, or just anchor-same-diff triplet.

For this sampling process, the training data should always have two utterances for the
same word type in order to sample the anchor-same pair. Thus, we have this condition
as a constraint on our training data: all word utterances that have frequency one in the
training set are excluded from training. The original paper Settle and Livescu (2016) has
this constraint even stronger, having the minimum frequency set to two. However, we do
not see any justification to reduce the amount of training data more than it is necessary
for the training procedure. Hence, we randomly split data in the proportion of 0.6 data
for the train set and 0.4 data for the development set and, after that, apply the constraint
for the training data which results in the more or less equal size of train and test sets.

In the sampling procedure, for every batch data point, we construct anchor-same-diff
triplet. In order to have more fast and robust training, we exploit the strategy that is
used by Settle and Livescu (2016): sampling more diffs while having fixed same. This
helps to adjust the anchor word in the fixed-dimensional space faster. Thus, for each batch
data point, we sample five diffs for the chosen anchor-sample pair. Due to this sampling
procedure, the data that has to be stored in RAM expands five times. This data, in
combination with memory costly evaluation part, does not fit into RAM. Thus, in contrast
to Settle and Livescu (2016), we have to use the procedure of loading data from the file
system which is slower but allows us to train on more data. We used the strategy when
we load data per batch and after using the features of one batch we replace them with the

Language Analysis and Processing



Data-Driven Lexicon Generation for ASR 39/88

features of a new batch. That allows us to fit the data into the memory for the training
and to compute the memory costly evaluation part.

For our implementation, we use TensorFlow21, a popular machine learning framework.
Since we have the TensorFlow implementation of our training algorithm, we need to have
the proper tensor for the batch and the variable-length input also becomes a problem.
However, RNNs can handle variable-length inputs and, in the TensorFlow implementation
of RNN, we just need to provide the lengths of each data point that is wrapped into a
tensor. Thus, we can simply pad variable-length features with zeroes up to the longest
length present in the training data in order to have the tensor with the proper shape. In
our case, we have the artificial feature-length set to 398.

6.3.2 Neural network architecture

The algorithm for acoustic word embeddings training was successfully implemented by
Settle and Livescu (2016) and stored open source22. We adapted this algorithm to train
our own acoustic word embeddings on the VoxForge data. The implementation follows the
methodology described in section 6.2. We exploit the bidirectional RNN in the Siamese
training setup. The training proceeds with the anchor-same-diff samples using the triplet
loss. Further, follow some technical details on the neural network architecture and its
training.

The RNN we use is composed of three bidirectional dynamic recurrent layers with 256
LSTM cells in each layer. In between these bidirectional layers, a dropout layer with keep
probability equal to 0.7 is present. The bidirectional layers are provided with the lengths
of each data point for the particular batch. The loss that we use for the network training
is the triplet loss that pays attention to the cosine distance between different words. The
formula of the cos hinge loss is as follows:

lcos hinge = max {0,m+ dcos (xa, xs)− dcos (xa, xd)} (8)

where dcos (x1, x2) = 1− cos (x1, x2) is a cosine distance between two vectors x1 and x2
and m is a margin for how far we want to place two vectors of different words from each
other. In our experiment, we set the margin m equal to 0.5

For the minimization of the loss function, the Adam optimizer is used with the learning
rate equal to 0.001. The network is trained for 100 epochs.

6.3.3 Evaluation

After every epoch, we use the trained model to evaluate our obtained acoustic word em-
beddings. For the evaluation of the whole model, we use the average precision metric
(AP).

In order to introduce AP, we first outline the precision metric. Precision is one of
commonly used metrics to assess the performance of a model. Precision of some class in

21https://www.tensorflow.org/
22https://github.com/shane-settle/neural-acoustic-word-embeddings
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a classification task is the ratio of true positive (TP) and the total number of predicted
positives, namely true positives (TP) and false positives (FP). The formula for precision
is given as such:

Precision =
TP

TP + FP
(9)

Average precision is a metric that is used to work with rankings. The most common
application of AP is for relevance document ranking in information retrieval.

The formula for AP is as follows:

AP =
1

GTP

k∑
i=1

STP

i
(10)

where GTP means the total number of true positives in the class and STP refers to
number of seen true positives till kth element in the ranked list of objects.

The simple illustration of how AP is calculated can be seen in figure 20.

Figure 20: AP calculation for a list of ranked objects. The picture is taken from Towards-
DataScience.com

For AWE quality evaluation, we consider all possible pairs of the development set data,
extract AWEs for them and measure the cosine distance between them. The precision
equals to 1 if word utterances of the same word type are the closest to each other. If
among closest words there are some utterances of the different word type, precision for
the anchor word type drops in the proportion of the number of not matching word types
among the closest words (similarly as shown in figure 20). We take average precision by
dividing the sum of all precisions for each same word type words by the number of same
word type words.

6.3.4 Results

We conducted some experiments on AWE training, the results for which are present in
table 2. In the table, the sizes of the training and development set are present in total
words and unique words. The tilde is introduced due to the fact that, after the random
split of the data into the training and development set and the filter procedure for the
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training set, we could have different number of utterances for the training set and the
different number of unique words in each set. We also cite the minimum word frequency
that was considered for including a word into the train set (denoted as word freq column in
table 2). In the last column of the table, we provide the best AP scores that each trained
model gained.

#
Train set Dev set Word

freq
AP

Size Unique words Size Unique words

1 ∼ 15 000 ∼ 1 100 12 000 ∼ 2 644 3 0.495
2 ∼ 180 000 ∼ 5 250 120 000 ∼ 5 758 2 0.590
3 ∼ 420 000 ∼ 6 550 120 000 ∼ 5 750 2 0.600

Table 2: Three trained AWE models with different configurations and their AP results.

The first experiment is done as a comparison of our model trained on some subset of
VoxForge data and the model described in (Settle and Livescu, 2016) trained on Switch-
board data. After training the model, they got AP equal to 0.67 which is about 0.17 better
than for our trained model. As the main reason for this result, we can name the differ-
ence in the chosen corpus (VoxForge for our experiment and Switchboard for (Settle and
Livescu, 2016) experiment). The difference in the number of unique words for the same
subset of the corpus can be the main reason for the difference in AP scores.

The second experiment shows the training on a bigger amount of VoxForge data and,
which is more important, even more unique words. The bigger number of unique words
helps to better distinguish between different word types due to the sampling procedure
and triplet loss function while the number of utterances in the corpus does not play a
big role. Using the second model from table 2, we could obtain a better AP than for
the first model that can be considered comparable to Settle and Livescu (2016). The
difference of 0.08 seems to be negligible in the light of different corpora that were used
for these experiments and, more importantly, the bigger amount of development data that
was used in our experiment which potentially increases the number of unique words for the
comparison in the evaluation. In Settle and Livescu (2016), the authors do not mention the
number of unique words, thus, we cannot scale our results in order to be able to compare
them with their results.

The third experiment considers even more data for the training of the model. However,
we could not improve further in comparison to the second model from table 2. We slightly
increased average precision but not significantly. That shows that increasing of word types
does not bring any improvement anymore and we probably reached the AP threshold on
VoxForge data.

In comparison to Settle and Livescu (2016), our results are 0.07 worse in AP. This can
be explained by different data sets that we use. The peculiarity of our VoxForge data set
is that we chose the data with rich number of English dialects since it is important for the
purpose of our research. Switchboard data set does not have a big variety in accents or
dialects in the data. The AP score is highly influenced by the purity of the closest feature
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vectors. If we have words of different types intervened in the closest vectors for a word,
the AP score drops. The accented speech makes the variance of the data higher and the
likelihood to have similarly sounding words as closest ones is higher. Thus, we can accept
our results being worse than those of Settle and Livescu (2016).

In order to better understand the AWE space, we picked several words that have simi-
larity in the way they sound. The similarity can concern the beginning or the end of the
word or can be assonant in overall. Among these words are word, world, sort, sold, port,
name, game. We also chose the word minute in order to see the probable clusters that can
be detected since we know that this word has several pronunciations in the corpus. The
visualisation of AWE space is shown in figure 21.

Figure 21: Embedding space for words word, world, port, sort, name, game, sold, minute.

In the figure, we can see that AWEs are grouped in clusters by different word types.
There exist some outliers but many of them can be easily explained by the similarity of word
pronunciations such as for game examples being in the name cluster, for world examples
being in the word group, for sort example being near the port cluster, the vicinity of sort
and sold clusters. Some visualized data is hard to explain in some meaningful way and
they can be considered only as very noisy utterance examples such as two minute outliers
and one name outlier. However, in general, we can admit that the quality of the AWEs
assessed by the visualisation of clusters seems to be satisfactory.

Further, we visualize the subspace of AWEs for minute utterances. From the corpus
data, we know that the word minute has multiple pronunciations present in the data set.
The visualization of this particular subspace will help us to make sure that with our training
of AWEs we can get quite nice clusters for different pronunciations within the same word
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cluster. The visualized AWEs for the word minute and their decodings obtained by the
Viterbi algorithm as labels are presented in figure 22.

Figure 22: Pronunciation distribution for the word minute.

The word minute has three different pronunciations in CMU hand-crafted dictionary:
M IH N AH T, M AY N UW T and M AY N Y UW T. In the figure, all different
pronunciations decoded by the Viterbi algorithm are colour-coded (precise description of
Viterbi algorithm and decoding procedure is described in section 2.1.1). Since we have
many different decoded pronunciations and our system was trained purely on words, there
is no surprise that we have quite mixed subspace for the word minute. However, we can
detect a small pronunciation cluster that corresponds to the lexicon pronunciations M AY
N UW T and M AY N Y UW T in the right lower corner of the figure. In this regard,
the whole subspace of the word minute can be divided into two pronunciation clusters, the
small right-corner cluster (M AY N UW T and M AY N Y UW T lexicon variants) and
the big cluster consisting of the rest utterances (M IH N AH T lexicon variant).

However, among utterances for the word minute, there exist several other frequent
pronunciations such as, for example, M IH N IH T or M IH N AH N D that we might
want to include into the pronunciation dictionary. Thus, we are highly interested to see
the AWEs for these decoded pronunciations as separate clusters in the AWE space. Hence,
we consider the training of AWEs that we performed so far insufficient to distinguish
between different pronunciations and we propose another training procedure to achieve
better performance for the pronunciation differentiation task in section 6.4.

Nevertheless, we would like to see what causes the position of AWEs for a word. The
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particular place of a word embedding for an utterance in AWE space can be caused by the
internal information of an audio segment that is different from phoneme acoustics such as
noise, speed of the speech, gender of a speaker, particular speaker, etc. We did the listening
test where we listened to utterances positioned in different places in the AWE space.

We could not derive any pattern for the data based on noise or speech speed. We also
extracted some information from the corpus metadata for wav files such as speaker gender
and pronunciation dialect. We plotted the results in figure 23 for visualizing the relation
of gender to vector position in AWE space and the figure 24 for visualizing the relation
of dialect to AWE position. We can witness that there is no any tractable dependency
between gender or dialect and embedding position in AWE space.

Figure 23: Pronunciation distribution for the word minute in relation to the speaker gender.
Different pronunciation decodings are colour-coded.

This observation shows that RNN mostly pays attention to the acoustics and is not
distracted by other factors such as the voice of a speaker, speech speed or noise which
means that there is no objective obstacle for RNN not to distinguish between different
pronunciations in AWE space.

6.4 AWE extraction extension

The way acoustic word embeddings are trained described in the previous section provides
us with the opportunity to distinguish different words. Due to RNN nature, the obtained
word embeddings bear a lot of information about the acoustics of a particular audio seg-
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Figure 24: Pronunciation distribution for the word minute in relation to the speaker dialect.
Different pronunciation decodings are color-coded.

ment and about the acoustic dependencies that occur in our data. However, this acoustic
information that is caught by the recurrent layers seems to be insufficient for distinguishing
between different pronunciations of the same word if we train our model that maps word-
segment MFCC features onto embedding space only with word labels. Thus, we propose
an extension for the training of acoustic word embeddings that might better distinguish
between different pronunciation variants (illustrated in figure 25).

Since we focus on unsupervised pronunciation generation, we do not have any available
source of pronunciations to directly train our model. However, we consider the Viterbi
decoding of word utterances to be a good source of artificial pronunciations because they
are obtained with a full reliance on provided acoustic information. Pronunciation sequences
decoded by the Viterbi algorithm could be used for the training of our model to differentiate
between different pronunciations. In this case, if we use decoded sequences as labels for
model training, we completely rely on the decoding quality and fully trust the result of
the Viterbi algorithm. Nevertheless, as we will see in the section 8.1 in table 3, not every
decoded pronunciation produced by the Viterbi algorithm is meaningful and we hardly can
tell which pronunciations belong to the same pronunciation variant. Thus, we propose a
simple trick on how to train the model to approximate the position of the word utterance
in the pronunciation space using Viterbi decoding.

For the training, we consider the following scenario: first, we train our model to differ-
entiate word types in the embedding space as was described in 6.3 and, then, we switch to
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the pronunciation training. The pronunciation training is done in the same manner, using
the Siamese RNN setup. The main difference is that we do not longer train the model at
the word level. For this training, the most important part is the proper data sampling at
the word pronunciation level for the weak supervision of the algorithm.

As we already pointed out, we use Viterbi decoding in order to train the model to better
distinguish between different pronunciation variants. At each iteration of the training,
one of word utterances from a batch is chosen to be an anchor. As a further step, the
anchor word utterance and all word utterances from the training set that correspond to
the same word as the anchor are decoded by the Viterbi algorithm. After decoding, we
have multiple possible decoded sequences for the word. The situation can be that we
will obtain all decoded pronunciations as different from each other or some of them might
actually coincide. In the case when the anchor decoded sequence and the randomly taken
decoded sequence are equivalent to each other, we definitely can sample this pair as anchor-
same following the procedure described in Settle and Livescu (2016). However, when
these utterances are dissimilar, we are unsure whether these utterances are of the same
pronunciation or not.

We propose to exploit the edit-distance criterion in order to identify how different the
decoded sequences are from each other. We introduce the threshold for the calculated
edit-distance that draws the line between surely different pronunciations and somewhat
similar ones. For our task, we use Damerau–Levenshtein edit distance (Damerau, 1964)
which denotes the minimum number of operations needed to change one string into the
other. The Damerau–Levenshtein distance includes transpositions in the list of possible
operations in contrast to classical Levenshtein distance (Levenshtein, 1966) that allows
only insertions, deletions and substitutions.

There exist two strategies to calculate edit-distance: unnormalized and normalized.
Unnormalized edit distance corresponds to the total number of steps for changing one
string into the other. Normalized edit distance normalizes this value by the number of
characters in the reference string. We would like to try both these strategies of edit distance
calculation for AWE training and compare them with each other in order to understand
which suits better for this particular task.

The main task is to come up with the sampling procedure that can draw proper anchor-
same-diff triplets. Calculating the edit distance can help to understand how much is the
difference between two word utterances. In order to arrange triplet samples for training,
we need to derive thresholds for putting word utterances in same or diff group based on
obtained edit distance for two utterances.

For each chosen anchor, we calculate edit distances between the decoded anchor and
every decoded word utterance of the same word type as the anchor. After we obtained all
possible edit distance values for the particular anchor, the edit-distance thresholds for being
in same or diff group are derived for this anchor. In order to calculate these thresholds,
we consider the sorted array of unique values of edit distances for a particular anchor.

With unnormalized edit-distance, the threshold for word utterance being in the same
group is floored first 20% of a sorted array of edit-distances. All values of edit distances
that fall into the first 20% of the sorted array are considered to be small enough to neglect
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the difference in decoded phonetic sequences and to refer word utterances with these edit
distances to the same group for training. The threshold for being in the diff group is
floored last 20% of a sorted array of edit-distances. In the same manner, all the word
utterances that have edit distance value larger than the defined threshold are considered
to have quite different pronunciation from the anchor. We will denote the training that
uses this threshold method with unnorm ed suffix. For the normalized edit-distance, the
threshold for word utterance being in the same group is 0.4 and for being in the diff group
is 0.6. This threshold method for training will be referred further with norm ed suffix.

Those utterance pairs that have edit distance above the diff threshold can be arranged
into anchor-diff pairs. As anchor-same pairs, the utterances with the edit distance beyond
the same threshold are chosen. This sampling procedure for AWE training extension
based on the threshold for anchor-same and anchor-diff pairs helps to distinguish between
completely different pronunciations according to Viterbi decoding and to keep those that
are likely similar closer to each other in the embedding space. The figure 25 illustrates the
sampling pipeline of the AWE extension algorithm.

The training is faster and more robust in the case if we sample more anchor-same-diff
triplets for each anchor in the data. However, we would like to exploit as much data as we
have. In this regard, we cannot choose only words with a high frequency of occurrences
in the corpus to be able to sample more anchor-same-diff triplets because it reduces the
amount of available data. Thus, we do not restrict the number of anchor-same or anchor-
diff pairs for the anchor in contrast to what was done by Settle and Livescu (2016).

In turn, we just set the number of how many anchor-same and anchor-diff pairs we would
like to have in total per batch independently from the number of such pairs per anchor.
We set this number to be two. We cannot set this number higher because we cannot
be sure that there are enough anchor-same-diff triplets in the data so that to arrange a
complete batch. In case the anchor word type has more than two appropriate diff and two
appropriate same in the training data, we save the rest for later compensation of lacking
pairs for the batch. In the case when the anchor has less than two diff and two same
utterances, we still use whatever is possible, namely one anchor-diff and one anchor-same
pairs. However, in this situation, we have less number of anchor pairs per batch than
is needed. That is why we compensate this lack by randomly sampling anchor-diff-same
triplets from the anchors with the exceeding number of occurrences that we saved. This
procedure is beneficial because the low-frequent words are not excluded and still present in
the data and high-frequency words can have the greater impact on the training due to the
random sampling in compensation procedure since they have higher chance to be chosen.

The whole data sampling for this AWE training extension was implemented in Python
using the open-source pyxDamerauLevenshtein library for Damerau-Levenshtein edit-
distance calculation23.

This is the whole data sampling procedure on which we rely for the discriminative
training of pronunciations. The results for models trained with edit-distance and their
comparison with other trained models in our experiment are presented in chapter 9.

23https://github.com/gfairchild/pyxDamerauLevenshtein
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Figure 25: Illustration of the sampling procedure for AWE training extension.
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7 Clustering

In order to generate a pronunciation dictionary completely based on data, we propose the
method that exploits cluster analysis for pronunciation derivation. Clustering can be ben-
eficial because there exist many words pronounced in a similar way that could correspond
to one pronunciation variant and we would like to detect these variants. The main idea
of the pronunciation clustering is to cluster word utterances that correspond to different
pronunciations for a word. For this purpose, we extracted AWEs for word utterances so
to get their fixed-dimensional features. We needed fixed-dimensional representations of
speech fragments that correspond to words in order to be able to apply machine learning
clustering algorithms. After the clustering of utterances for different words is performed,
we hope to obtain meaningful clusters that denote different pronunciations for a word that
can be put into the pronunciation dictionary.

This chapter describes the clustering step of the proposed pronunciation generation
system. Section 7.1 gives information on the clustering algorithms that we chose for our
experiments on pronunciation clustering. Section 7.2 is devoted to the discussion of the
results obtained by the clustering algorithms presented in section 7.1.

7.1 Clustering algorithms review

In this section, we outline all the clustering methods that we would like to try in our exper-
iment on pronunciation clustering. We discuss the theory of various clustering algorithms
and their applicability for our task.

There exist various types of cluster analysis because the notion of a cluster can be
defined from many different perspectives. We would like to concentrate on the clustering
types that can automatically detect the number of clusters. However, we also consider
some simple clustering types for evaluation.

The list of clustering types and corresponding algorithms that we would like to exper-
iment with is the following:

1. Centroid-based clustering

- K-Means

2. Probabilistic clustering

- GMM

3. Density-based clustering

- DBSCAN

- OPTICS

4. Deep clustering
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- SOM

- GNG

Further in this section, we discuss each clustering method from the list presented above.

7.1.1 K-Means

We consider using the K-Means algorithm as a baseline system for our experiments on
pronunciation clustering. This method of clustering needs to know into how many groups
to divide input, thus, K denotes the number of desired clusters. The K-means clustering
algorithm uses the notion of centroids for data clustering. The algorithm starts with the
initial estimate for the position of centroids and continues with the iterative procedure
of centroid adjustments. This approach of parameter estimation is called Expectation-
Maximization (Dempster et al., 1977). In the E-step, each data point is assigned to the
nearest centroid that defines one of the clusters. The assignment relies on calculation
of the squared Euclidean distance between a centroid and a data point. The M-step
recomputes centroids by averaging all data points assigned to a centroid cluster. The K-
Means algorithm iterates between E- and M-steps until some stopping criteria are satisfied
such as a maximum number of iterations is reached, the position of centroids do not change
significantly, etc.

The K-Means algorithm is great for capturing spherical-shaped clusters but, in the
case of pronunciation clustering, we cannot be sure that the AWE model arranges data
into spheres. For word-level AWEs, it can be easier for the model to arrange embeddings
into spherical-shaped word clusters. However, in the case of pronunciation differentiation,
it is more likely for one word pronunciation to flow slowly into another which will not give
a spherical pronunciation cluster. Nevertheless, since we cannot assess the data shape for
each word in the corpus, we still can expect K-means clustering to perform relatively well
for the task of pronunciation clustering and use it as a baseline system for our clustering
experiments.

7.1.2 GMM

Another clustering method we would like to explore is the Gaussian Mixture Model (GMM).
The GMM finds a mixture of multivariate Gaussian probability distributions that best
models the input data. The task for the GMM is to fit k Gaussians to the training data by
estimating their parameters such as mean µ and variance Σ for each cluster. The number
of components k must be chosen manually. The GMM also learns the weight φ for each
modelled Gaussian. Thus, the GMM is a weighted average of k Gaussian distributions:

p(x) =
k∑

j=1

φjN (x;µj,Σj) (11)

For the parameter estimation, the Expectation-Maximization algorithm is used which
we already discussed with the application to K-Means. In the E-step, for each data point,
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the probability to be generated by each of k Gaussians is calculated. In the M-step, the
weights, means and covariance matrices are updated according to new data probabilities.
The iterative training including these two steps proceeds until the stopping criteria are
met. After all parameters are learnt, we can compute probabilities for each test data point
to belong to each of Gaussian probability distributions, or simply clusters, based on its
distance from a particular distribution.

The GMM fits our task of pronunciation clustering well since we expect that the data
for each pronunciation will follow the Gaussian distribution. However, it can occur that
we do not have enough data for a pronunciation variant to make a Gaussian distribution.
Another problem is that we need to define a number of components for the GMM and keep
it fixed while the number of pronunciations can be different for every distinct word. To
deal with this issue, we propose the selection method for the number of components for
each word that utilizes the Bayesian Information Criterion (BIC) (Schwarz et al., 1978).
This criterion gives an estimation on how well the GMM predicts the data. Among some
final set of models, the model with the lowest BIC score is preferred. The BIC is based
on likelihood function and, in order to avoid overfitting, it penalizes models with a big
number of clusters.

7.1.3 DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is a density-based
clustering algorithm that separates clusters with high density from clusters with low den-
sity (Ester et al., 1996). DBSCAN searches for areas with high density in data points
comparing them to the areas with low data density. For the clustering, DBSCAN needs
two parameters: ε that specifies the maximum distance for the points to form a cluster
and minPts that defines the minimum number of points to form a cluster. The algorithm
starts with a random data point and searches for all neighbours of it within ε distance.
If the number of neighbours is greater or equal to minPts, the cluster can be initialized
with this data point and all its neighbours. Otherwise, the data point is labelled as noise
unless it is found among another data point’s neighbours later. Then, the process of finding
neighbours continues for the rest of the unconsidered data points in a cluster until the full
cluster is discovered. If there are left unprocessed data points, they will initiate a new
density-based cluster or will be labelled as noise.

The advantages of the DBSCAN algorithm are that it can model data of different shapes
and can handle outliers well since it considers them as low-density regions. We consider this
a benefit for the pronunciation clustering task because the speech domain is prone to have
outliers in word pronunciations due to many phonological processes. Another advantage
of this clustering algorithm for our application is that DBSCAN can derive the number of
clusters automatically based on the data provided. The main disadvantage of DBSCAN is
that it cannot handle high-density clusters of varying density.
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7.1.4 OPTICS

The Ordering Points to Identify Cluster Structure (OPTICS) algorithm is also a density-
based clustering method and can be seen as an extension of DBSCAN (Ankerst et al.,
1999). It was introduced to tackle the problem that DBSCAN could not handle, namely
the varying densities in clusters. OPTICS works similarly to DBSCAN but it does not
provide cluster assignment directly but generates the ordering of data points based on
their distance from each other. The data points of denser clusters are listed closer to each
other in this ordering.

To present the OPTICS algorithm, we need to introduce two concepts. The first concept
is core distance which is the minimum ε distance for a data point in order to initiate a
cluster given minPts parameter. The second one is reachability distance which implies the
minimum distance between two data points p and o if o can initiate a cluster. The algorithm
starts with computing core distances for all data points and, then, looping over all data
to update reachability distances. The ordering of data point processing is defined by the
reachability distance (first goes the data point with the smallest reachability distance).
This way OPTICS keeps data points of dense clusters close to each other. All calculated
reachability distances comprise a reachability plot (may be seen as a dendrogram). This
reachability plot is used to do the cluster assignment to data points. Data points of the
same cluster have a low reachability distance and can be seen as valleys in the reachability
plot. By detecting these valleys by different means, clusters can be assigned.

In addition to advantages borrowed from DBSCAN, as an advantage of OPTICS al-
gorithm for our task of pronunciation clustering, we see that OPTICS can detect clusters
of varying densities which is a possible situation for the pronunciation distribution. For
example, many pronunciations can vary in some particular part in different ways creating
a big cluster for the variation in terms of place but having small clusters for different types
of variation. We would like to detect smaller clusters within this big cluster since this
variation can be meaningful.

7.1.5 SOM

Self-organizing map (SOM) is a clustering algorithm that exploits the notion of neural
networks and works as a dimension reduction technique (Kohonen, 1982). Neurons in
SOM are arranged in a 2-dimensional grid and have a rectangular or hexagonal shape.
The main task of SOM is to adapt the grid to the internal shape of the data so neurons of
the grid grouped around dense areas in data. This way, many neurons in one area of the
grid could represent underlying clusters in the data.

The algorithm starts with random positioning of neurons of the grid in the data space.
Then, SOM starts with data point selection and moves the closest neuron to this data
point closer to it. The distance of the neuron shift is determined by the learning rate and
it decreases with a number of iterations. SOM also moves all the neuron’s neighbours in
the grid closer to the selected data point while further neighbours are moved by a smaller
distance. Neuron’s neighbours are identified by the radius around the neuron which is also
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decreased with each iteration of the algorithm. The SOM algorithm is highly dependent
on a learning rate and neuron radius parameters, thus, they must be tuned as well as the
number of neurons in the grid. The resulting grid of SOM (can be seen in figure 26) helps
to visualize the data and identify existing clusters in the lower dimension.

Figure 26: Visualization of SOM algorithm. The picture is taken from SuperData-
Science.com

The advantage of the SOM algorithm for the task of pronunciation clustering is that
it can learn the shape of the data with high precision and can identify intrinsic clusters
without need to know the resulting number of clusters. For the AWE space, where the
space of data points of word utterances can be complex, this algorithm behaviour can be
beneficial.

7.1.6 GNG

Growing Neural Gas (GNG) (Martinetz et al., 1991) is a neural clustering algorithm in-
spired by the SOM algorithm which also learns the topology of the data. In comparison
to SOM, GNG does not require the number of neurons in the grid to be specified. In the
case of GNG, the number of neurons increases while the algorithm proceeds based on the
specified conditions of the algorithm.

GNG starts with two randomly initialized neurons in the data space. At each iteration,
the algorithm selects a data point and, similarly to SOM, moves the nearest neuron to
this data point closer to it. The neighbours of the closest neuron are also moved closer to
this data point. Then, the algorithm searches for the second closest neuron to the data
point. If the two closest to the data point neurons are not connected, GNG connects
them. If they are connected, the algorithm sets the age value to zero. The age value is a
measurement for the edges between neurons defining the distance between data points and
their corresponding neurons. If an edge between neurons has a quite large value, the edge is
deleted. If a neuron got detached from others after this, it is deleted. After every constant
number of iterations, the cumulative error of each neuron is calculated. The cumulative
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error is a sum of distances from a neuron to each data point. Between the worst-performing
neuron and its worst-performing neighbour, a new neuron is inserted. The GNG proceeds
until the stopping condition is met.

We can consider this algorithm for pronunciation clustering application since the algo-
rithm works similarly to SOM with all its advantages for our task. GNG even overcame the
limitation of SOM, that requires the number of neurons to be defined, and can determine
the place where the data is represented the worst and can refine it accordingly.

7.2 Clustering experiments

The main idea of data-driven pronunciation generation is to include into the lexicon, when-
ever possible, all the meaningful pronunciation variants for a word that were found in the
data. Here we face the question of what a pronunciation variant actually is. It is a pretty
difficult task to define what should be considered as a pronunciation variant for an ASR
system. Probably, we want to think not only of word utterances pronounced by English
speakers of different dialects or two drastically different pronunciations that vary in sev-
eral phonemes as pronunciation variants. We could also consider a word pronunciation
influenced by the context at word boundaries as different pronunciations.

The main criterion that we define for considering word utterances to be pronunciation
variants is that it would be beneficial for the ASR system to include them into the pro-
nunciation lexicon. However, this vague definition of a pronunciation variant influences
the possibility to evaluate pronunciation variants, for example, in clustering tasks, since
clustering is an unsupervised technique of data analysis. Thus, in order to evaluate our
clustering experiments, we relied on data visualisation as a manual verification for the clus-
tering quality at the intermediate step. Nevertheless, at the final stages of our experiment,
we evaluated the pronunciation clustering quality in terms of our primary metric of interest
- the ASR performance. These results are presented in chapter 9.

We conducted several experiments on using different clustering methods that we de-
scribed in the previous section. The clustering procedure for our data is as follows: for
all utterances of a particular word, we take their MFCC feature vectors and extract fixed-
dimensional vector representations with the use of the AWEs extractor (described in section
6.3); then, the obtained AWEs of all word utterances are used as features for a clustering
algorithm. For the clustering experiments, the AWE model is used without the extension
proposed in section 6.4.

7.2.1 Results

Firstly, we explored the simple K-Means clustering. The main disadvantage of this clus-
tering method is that it needs to have a predefined number of clusters. We decided to try
this approach as a simple baseline. We tried several numbers of clusters and in figure 28
in attachment A.1 we present the best result corresponding to four clusters. From figure
28, we cannot see any pattern for the clustering output except for the low right cluster in
the corner which corresponds to the joint pronunciations M AY N UW T and M AY N
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Y UW T for the word minute in the CMU dictionary. We could consider this clustering
good, however, without defining a number of clusters for each word separately we cannot
achieve good performance for the whole system. Thus, with this limitation of K-Means,
this approach is not scalable for the whole data set.

Then, we tried two density-based clustering algorithms, OPTICS and DBSCAN. The
visualisations of results for both clustering methods are shown in figure 29 and figure 30 in
attachment A.1. These methods can derive the number of clusters based on the density of
data points and it is not needed to assign them manually. For the word minute, OPTICS
(figure 30) and DBSCAN (figure 29) algorithm defined two clusters. The inspection of the
results suggests that there is no pattern for the clustering for both algorithms. At least, the
results do not show any clusters of the identically or similarly decoded Viterbi sequences.

This result makes us conclude that density-based clustering is not appropriate for our
task of clustering pronunciations in the AWE space. In the case of AWEs, we do not
use actual acoustic features of a speech segment but we artificially create a new feature
vector for this segment which not necessarily preserves the sufficient amount of acoustic
information. This specific of AWEs training makes the chances of acoustically very similar
segments be mapped very close to each other quite small. All the dense areas in our
AWE space are more due to randomness. Thus, density-based clustering cannot catch the
original acoustic similarities of the data but only the artificially created ones. Hence, we
cannot rely much on this type of clustering in our task.

Then, we investigated two neural network approaches, Self-Organizing Maps (SOM) and
Growing Neural Gas (GNG). The SOM algorithm detected five clusters in data and GNG
detected only one cluster. The GNG result in figure 32 in attachment A.1 can be reasonable
to some extent but in the case of the word minute, we would expect the algorithm to detect
at least two clusters that are present in the hand-crafted dictionary. It is possible that
GNG can detect only drastic differences in data. If so, this clustering method seems to
be not suitable for the pronunciation detection task. The SOM results show more random
allocation of cluster labels (figure 31 in attachment A.1). We cannot track any particular
pattern for this. Thus, we consider this clustering method inappropriate for our clustering
task.

Finally, we tried the Gaussian Mixture Model as a clustering method. This method
is quite similar to K-Means and also expects the number of Gaussian components to be
predefined. Based on the visualization in figure 33 in attachment A.1, we can conclude
that the clustering results of GMM are quite similar to K-Means and this algorithm can
detect the lower right corner cluster which we would like to have detected by the clustering
algorithm.
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7.2.2 Discussion

Having these results24, we can conclude that none of the algorithms that have internal
mechanisms for deriving the number of clusters can cope with the task of pronunciation
clustering in the AWE space. This outcome can be influenced by several reasons. First of
all, the results of a clustering algorithm are highly dependent on the quality of features fed
to a clustering algorithm. Since we train the AWE space and do not use initial acoustic
features, that can be among the reasons for the clustering to fail. The trained feature
vectors might not contain the information that is required for a clustering algorithm to
detect reasonable clusters for our data. That is the sign that our trained AWE space is
not informative enough or even misleading and has to be improved further.

Another reason for clustering to seem to perform poorly can be the quality of the
Viterbi decoding. Since for better understanding of the data visualization we provide labels
represented by Viterbi decoded sequences for a particular word utterance, our judgements
regarding the quality of clustering highly dependent on the labels that we provide. However,
it might be the case that our AWE space represents data in a qualitative and reasonable
way and clustering performs nicely on these AWEs. The main problem, in this case, is that
we do not see that our clustering has good results because the Viterbi decoding does not
show us that in the visualizations by providing misleading labels (decoded pronunciation
sequences). If the output of Viterbi decoding is very noisy and often makes mistakes, we
can miss the actual quality of clustering on AWEs since we highly rely on the labels in our
judgements. If the problem is in the quality of the Viterbi decoding, we cannot improve
this much.

The question is which part of our pipeline we trust more, Viterbi decoding or trained
AWEs. If we trust the Viterbi algorithm more, then we are satisfied with the quality
of clustering algorithms that derive the number of clusters in data on their own and the
solution would be to improve our fixed-dimensional AWEs. As the improving strategy, the
suggestion proposed in section 6.4 can be used. If we trust our trained AWEs more, we
might want to use our best performing clustering methods such as K-Means or GMM and
try to eliminate the need for the predefined number of clusters which is a limitation for
our task of pronunciation clustering. For this purpose, we can incorporate the BIC as a
stopping criterion into these clustering methods (Chen and Gopalakrishnan, 1998).

7.2.3 Improving clustering results

Based on the considerations presented in the previous section, we tried to improve the
clustering results with the defined options. We tried using the most successful clustering
algorithm, namely the GMM, on features extracted by the AWE model trained with the

24 We also conducted small scale ASR experiment that evaluates WER score for all clustering algorithms.
GNG achieved the best performance by clustering almost all pronunciations to one cluster (cluster rate is
1.011). GMM performed better than the rest of the clustering algorithms in this evaluation. Considering
our task of introducing multiple meaningful pronunciations in the lexicon, the results of GNG seem to be
unsatisfactory.
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extension proposed in section 6.4 and applying the BIC as the stopping criterion for decid-
ing how many pronunciation variants of a word are present in the corpus. The visualisation
of the clustering results for the word minute is shown in figure 27.

Figure 27: Clustering results obtained by the GMM algorithm with the BIC and performed
on features extracted from the AWE model trained with unnormalized edit-distance.

We can see that the results presented in figure 27 are not satisfactory. In the figure, we
cannot see the basis for the algorithm to choose this number of clusters and any pattern
derived from the Viterbi decoded labels. This result can be due to insufficient time for the
extension algorithm training so that it cannot perform good on the chosen word minute
yet. Another reason can be that we chose quite a big margin for anchor-same-diff sampling
for the AWE training. Since for this visualisation we plotted the result of unnorm ed
AWE model, we can suggest that the 20% of first edit-distances for the same group and
20% of last edit-distances for the diff group can be too broad to draw the clear line between
different pronunciations in the AWE space.

Nevertheless, we try to use this clustering model for the pronunciation generation task
in order to assess the quality of lexicon generation model based on cluster analysis.
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8 Lexicon Generation

The primary aim of this research is to investigate different approaches of pronunciation
generation and compare them with each other in terms of their influence on ASR per-
formance. In this chapter, we describe different possible ways of lexicon generation for
ASR.

Section 8.1 introduces the decoding procedure that is used in the majority of our ex-
periments on lexicon generation and presents a small experiment on the understanding of
the decoding output. In section 8.2 and section 8.3, we define the benchmark and base-
line lexicons, respectively. In section 8.4, we discuss lexicons that can be generated by
the proposed pronunciation generation system based on clustering analysis. Section 8.5
proposes additional lexicons for comparison and investigates methods for overall lexicon
improvement. Section 8.6 provides some general information and comparative statistics
for the considered lexicons.

8.1 Decoding

For the purpose of pronunciation generation for the dictionary entries, we would like to
exploit as much acoustic information provided by the audio signal as possible. The main
approach of phonetic sequence generation for an audio input is ASR decoding. The most
known and widely used method for ASR decoding is the one that uses the Viterbi algorithm
for finding the best phonetic sequence for the input. We would like to use this algorithm in
our experiments on pronunciation generation since it mostly relies on the acoustic informa-
tion which makes the decoding procedure to be predominantly data-driven. The Viterbi
decoding algorithm was introduced in section 2.1.1. Further, in this section, we discuss
how Viterbi decoding is used in our pronunciation generation system.

8.1.1 Decoding procedure

We implemented our own version of the Viterbi algorithm in Python in order to use it for
our experiments on lexicon generation. We use a simple Viterbi algorithm without pruning
since the decoding of words is not a really costly procedure. All the computations in our
implementation of the Viterbi algorithm are performed in the log space in order to compute
faster and prevent ”underflow” when very small probabilities are rounded to zero.

For the computation of the Viterbi algorithm, we provide three types of likelihoods:
state initial, state transition and emission likelihoods. All these likelihoods can be extracted
with the help of the trained ASR model.

State transition probabilities are extracted from the phone alignments obtained by
the ASR model trained on LDA + MLLT features applying SAT (for more information
on phone alignments refer to section 5.2). As phone alignment material for transition
probability extraction, the whole training set of VoxForge data is used. First, we align the
audio signal with the sequence that the ASR model has decoded in an audio-segment-to-
phone manner. With the custom Python script, we extract the probability to transit from
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one phone to another from the obtained phone alignments.
For the sake of initial probabilities extraction, we cannot rely on phone alignments. This

is due to the fact that we deal with isolated words in our experiments and the ASR model
aligns the training data consisting of utterances and not separate words. To overcome this,
we use discrete uniform distribution for the phone initial probabilities. That is motivated
by the assumption that a word can start with any phone with almost equal probability and
the actual difference in phone initial probability distribution is insignificant. We conducted
several small fetch-factoring experiments for initial probabilities and, based on these results,
we claim that we can neglect this difference in initial probabilities extraction since initial
probabilities do not influence much the decoding output25. The state initial probabilities
were extracted by a custom Python script.

After transition and initial probabilities extraction, these probabilities are moved to
the log space.

For the emission probabilities extraction, we use already trained neural network ASR
model. The emission likelihoods were obtained by performing the forward pass of the Kaldi
TDNN model26 that was trained following the LibriSpeech Kaldi recipe for DNN training
of ASR system. The output of the TDNN model is represented as a matrix of pdf-level
likelihoods for each frame. For our task of Viterbi decoding, we aim to perform the phone-
level decoding instead of pdf-level one. To overcome this representation problem of the
forward pass, we first need to normalize the pdf-level likelihoods per frame since they come
unnormalized from the neural network model. After the normalization of likelihoods in
the log space, we need to find the correspondence between pdfs and phones. The mapping
can be obtained from the copy-transition-model Kaldi script27. It takes the trained
model as an input and outputs the pdf-to-phoneme mapping. We extract the phone-level
likelihoods by normalizing the sum of all pdfs belonging to the particular phone per frame.
This is also done in the log space in order not to lose the numerical precision. Thus, we
successfully obtain the phone-level likelihoods from the likelihoods of our neural network
model by a custom Python script.

As already mentioned, the extraction of initial and transition likelihoods is done based
on the whole training set of the VoxForge corpus. These likelihoods can be used for
decoding any word in the VoxForge corpus since they are shared. However, to decode
some particular word, we need to have the emission likelihoods corresponding to this exact
word. Thus, for the whole set of words that we would like to decode we need to obtain
their emission likelihoods with the forward pass of the ASR model. All our experiments
consider the lexicon generation based on the training set of VoxForge corpus. Thus, for the
lexicon generation experiments, we extract all necessary emission likelihoods for words in
the training set of the VoxForge corpus and then decode all words in it. The pronunciation
sequences decoded by our Viterbi algorithm are further used for the lexicon generation
experiments.

25We introduced different fetch factors to see if the difference in probabilities changes the decoding
output.

26https://github.com/kaldi-asr/kaldi/blob/master/src/nnet3bin/nnet3-compute.cc
27https://github.com/kaldi-asr/kaldi/blob/master/src/bin/copy-transition-model.cc
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8.1.2 Preliminary decoding experiment

We conducted a small decoding experiment in order to understand how clean the output of
the Viterbi decoder is and if we can improve the lexicon using the decodings of the Viterbi
algorithm. As a test word, we chose the word minute because it has the high number of
pronunciations in the dictionary - three and has quite many utterances in the corpus in
general (it constitutes 0.031 of the corpus size in word utterances). We picked these criteria
since multi-pronouncing words pose a problem for ASR and we aim at improving exactly
for this kind of words in the lexicon.

The results of the decoding for the word minute are presented in table 3 where the first
column is the id of a particular decoded sequence, the middle column represents the unique
decoded sequence obtained for the word minute and the final column shows the number of
occurrences for a particular decoded sequence e.g. how many times this decoding occurred
for the word minute based on the decodings of many word utterances.

ID Decoded sequence # word utts

1 M IH N AH T 35
2 AH M IH N AH T 9
3 M IH N AH N D 5
4 M IH N IH T 5
5 AH M IH N AH N T 3
6 M IH N 3
7 M IH N AH N 3
8 M AY N UW 3
9 AH M IH N AH D 2

10 W AH N 2
11 AH M IH N AH 2
12 M IH N AH 2
13 M IH N AH N T 2
14 AH M IH N IH T 1
15 W AH M IH N AH 1
16 AH M IH T AH 1
17 M IH N IY 1
18 AH N AH N 1
19 IY M IH N IH JH 1
20 M IH N AH D 1
21 AH L IH N IH T 1
22 M IY 1
23 W AH N AY N UW IH T 1
24 AH M IH 1
25 M AH D 1
26 AH M IH N 1
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27 W IH N IH 1
28 M AY N UW IH T 1
29 AH M IH N IY IH T 1
30 W AH N IH D 1
31 M IY AH N IY 1
32 OW M IH N AH 1
33 AH M AH T 1
34 M IH N IH T S 1
35 DH AH M IH N IH T AH T 1
36 W AH M IH N AH T 1
37 M AH T 1

Table 3: Different decoded pronunciation sequences obtained by the Viterbi decoding
algorithm for the word minute.

In the hand-crafted pronunciation dictionary, linguists put three different pronuncia-
tions for the word minute: M IH N AH T, M AY N UW T and M AY N Y UW T.
We actually witness one of these pronunciations after decoding with the Viterbi algorithm
in table 3 (highlighted with the dark grey colour) and it is the most frequent decoded
sequence of phonemes. The other two pronunciations are not present in our decodings,
however there is a variations of the second lexicon entry (the sequence under ID 8 in table
3).

As we can see from table 3, there are some variants in the decoded sequences which we
do not want to put into the dictionary. However, we can see some promising pronunciations
that we might want to include in the pronunciation dictionary (highlighted by the light
grey colour), for example, the decoded pronunciation under ID 4. There are also some
interesting examples that could be valuable and beneficial to include in the lexicon since
they actually exist in the language. For instance, D ending in several decoded sequences
instead of T or AH appearing in the beginning. These could be the reflection of some
phonological processes such as voicing/de-voicing, epenthesis or final consonant deletion.
If they happen in the real world, we could benefit by including them in the pronunciation
dictionary.

Nonetheless, it is obvious that a special strategy is necessary here in order to choose the
right pronunciations to be included in the new dictionary. We see some potential in using
the Viterbi decoder to extract possible pronunciations but we also need a mechanism to
filter out some noisy pronunciations and not to expand the dictionary too much. Thus, we
believe that the system proposed in section 4.1 can help to generate clean and meaningful
pronunciation entries for the dictionary.
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8.2 Benchmark lexicon

As a benchmark lexicon, we chose the pronunciation dictionary introduced by CMU28. The
CMU dictionary is an open-source pronunciation dictionary for North American English
containing over 134 000 words and pronunciations for them. The dictionary represents
words and their pronunciations expressed with the ARPAbet phoneme set29 developed for
ASR tasks. The current phoneme set has 39 phonemes.

The CMU dictionary is still actively maintained and expanded. This pronunciation
dictionary is one of the most actively used for speech recognition and synthesis purposes
for the English language. Particularly this lexicon is used in the standard Kaldi recipe for
the VoxForge corpus. In our version of the CMU dictionary, there are 123 699 different
words equalling to 132 982 pronunciations in total.

The CMU dictionary is a hand-crafted dictionary maintained by linguists which is the
common practice in lexicon creation for ASR tasks. Hand-crafted dictionaries are usually
considered to be quite good for training of ASR models. That is why we consider using
the CMU dictionary as a benchmark for our experiment.

8.3 Baseline lexicons

For the generation of baseline lexicons, we use the Viterbi algorithm for decoding of the
whole training set of the VoxForge corpus.

The first baseline approach for lexicon generation considers the most frequently decoded
pronunciation sequence to be the most reliable for ASR training. Thus, in this approach,
we generate the lexicon in a one-word-one-pronunciation manner. The word pronunciation
to be written in the lexicon is chosen based on its absolute frequency among all sequences
for the word decoded by the Viterbi algorithm. We will refer to the lexicon generated in
this manner as 1 1.

The second baseline approach uses a similar strategy for choosing pronunciations but,
instead of writing only one pronunciation for a word into the dictionary, we write top three
pronunciations based on their absolute frequency after the decoding. If there are less than
three distinct decodings for a word, all of them are taken as word pronunciations to put
into the lexicon. The choice of writing top three pronunciations is motivated by the fact
that we want to write more than one pronunciation into the dictionary since we know that
many words have more than one pronunciation in a language. However, we do not want
to overload the dictionary with too many pronunciations. This approach for dictionary
generation will further be referred as 1 3.

These two approaches are motivated by the fact that if we can decode one word similarly
several times with Viterbi decoding, we expect them to sound alike and there are more
chances for the ASR system to decode them this way as well. Thus, it would be helpful to
include this decoded entry into the lexicon.

28http://www.speech.cs.cmu.edu/cgi-bin/cmudict
29https://en.wikipedia.org/wiki/ARPABET
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The third baseline approach for pronunciation generation includes writing all possible
decoded pronunciation sequences into the pronunciation dictionary and, thus, having many
same word entries in the lexicon. This approach is motivated by our interest in determining
how this strategy of pronunciation generation influences the overall performance of the ASR
system (if we improve or worsen the WER score) and the time required for the training of
ASR system. This lexicon is denoted as 1 all on-wards.

The baseline lexicons differ in a strategy of handling the decoded words, however, all
baseline lexicons share a simple voting strategy for choosing word pronunciations. In table
5, for recapitulating purposes, all baseline lexicons are presented with short descriptions.

8.4 Data-driven lexicons

The approach for data-driven lexicon generation is based on our main research on pronunci-
ation clustering considering the acoustic information. This approach uses MFCC acoustic
features for word utterances and, with the help of the AWE extraction system, obtains
fixed-dimensional AWEs for each word utterance. These AWEs are used to cluster pro-
nunciations for each word in the training set into some pronunciation groups. The whole
pipeline of the proposed system is discussed in section 4.1.

For all data-driven approaches, we explore the same strategy of taking only one the most
frequent pronunciation decoded by the Viterbi algorithm as in 1 1. However, the most
frequent decoded pronunciation is taken not for a word but for each detected pronunciation
cluster for a particular word. Thus, in the lexicon for each word, the number of written
pronunciations corresponds to at least the number of detected clusters or more if we have
several pronunciation variants with a maximum frequency in a cluster. The motivation for
this strategy is the same as for 1 1 and 1 3 lexicon generation approaches. However, in
this case, if clustering can detect different pronunciations of some word, we will be able to
include all of them whereas in the case of the 1 1 and 1 3 lexicons, there is a high chance
to miss some existent pronunciation because it is not frequent in the data.

The difference between various data-driven lexicons is due to the variations in the
clustering procedure and the AWE space training. Clusters for the lexicon denoted as
clust were generated by simple GMM clustering with five fixed components on features
extracted by AWE word differentiation model. The lexicon referred as clust bic is gener-
ated with clustering done by the GMM with using of the BIC as a stopping criterion for
choosing the number of clusters for each word in the training data. The AWE training
is the same as for clust. The motivation and description of this strategy were discussed
in chapter 7. The last two data-driven lexicons denoted as clust bic unnorm ed and
clust bic norm ed use the same strategy for clustering as the clust bic lexicon but have
different sampling procedure in the AWE training. According to its sampling procedure,
the AWE space has extended pronunciation training with edit-distance utilization (exten-
sion training is discussed in section 6.4). The difference between clust bic unnorm ed
and clust bic norm ed lexicons is in the way edit-distance is calculated for AWE training
(unnormalized vs. normalized, see section 6.4 for more details).

All data-driven lexicons are present in table 5 in the form of a small overview.
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8.5 Additional lexicons for comparison

The three lexicons introduced in the previous section are used for the comparison of the
data-driven approach for lexicon generation with the baseline lexicons and one benchmark
lexicon represented by the hand-crafted CMU dictionary. However, we conducted several
more experiments on pronunciation generation techniques in order to compare their perfor-
mance with the data-driven dictionaries and explored other strategies that could improve
lexicon generation.

We decided to generate the fully G2P (more on G2P can be found in chapter 3) lexicon
in order to compare its results with the results of introduced data-driven lexicons. This
comparison is interesting because one of the possible applications for the proposed system
is to generate OOV words for the ASR task. G2P systems are mainly used to handle the
problem of OOV words in ASR. We would like to prove if the proposed data-driven lexicons
can outperform the standard technique for OOV handling.

For lexicon generation, the pre-trained Sequitur model was used (Bisani and Ney, 2008).
Then, the internal Kaldi script30 was used to obtain G2P conversions and get the lexicon.
We generated the lexicon only for in-vocabulary words in order to have comparable results
with other dictionaries. In this lexicon, the number of total word pronunciations is equal
to the number of words in the lexicon. From now on, this lexicon is denoted as g2p.

For research purposes in the area of pronunciation generation, we also include several
more lexicons for the comparison among baseline systems. We would like to empirically
find out what number of top pronunciations has to be included in the lexicon. These
new lexicons are also based on the voting strategy and differ from already introduced
baseline lexicons in a number of pronunciations written for a word. The 1 2 and 1 4
lexicons represent lexicons with top two and top four decoded pronunciations for a word,
respectively. These lexicons are introduced as a source of comparison for the 1 3 lexicon
in order to figure out what number of top written pronunciations is the most appropriate
to be used in a lexicon.

All introduced additional lexicons can be found in the overview table 5.

The last method for lexicon generation that we would like to investigate involves the
probability assignment to the pronunciations in the lexicon. Exploring different probability
assignments in Kaldi can show us how pronunciation probabilities influence ASR results
and which strategy for probability assignment is the most suitable for data-driven lexicons.

For lexicon probability investigation, we use the best performing data-driven lexicon.
The performance of lexicons is presented in figure 7 in chapter 9. According to the obtained
results, the best performing data-driven lexicon turns out to be clust bic unnorm ed.

We aim to explore the influence of introducing non-equal pronunciation probabilities.
The Kaldi toolkit by default makes all pronunciation probabilities in the lexicon equal
unless the probabilities are explicitly specified. In this case, all the pronunciation variants
have the probability equal to 1.0, meaning that it has zero cost in the Kaldi graph. We
would like to use the knowledge that all pronunciation variants are not equally distributed.

30https://github.com/kaldi-asr/kaldi/blob/master/egs/librispeech/s5/local/g2p.sh
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Since we have the output of the Viterbi decoding, we can use the frequency information of
these decodings to calculate the probability of each pronunciation variant for a word.

We explored several ways of probability assignment for the Kaldi lexicon. The first
approach is just to assign probabilities accordingly to pronunciation frequencies out of
Viterbi decoding. In this approach, we use the main notion of the probability. For the
second approach, we set the most frequent pronunciation variant to be equal to 1.0 and
the rest variants‘ probabilities are proportionally recalculated.

8.6 General lexicon information

The main goal of this research is to compare all these data-driven pronunciation generation
approaches to each other and to the actual hand-crafted dictionary that is used to train
the ASR system for the VoxForge corpus in the Kaldi toolkit. As a comparison measure,
we chose the WER score of the ASR system trained with each lexicon.

For these dictionaries to be comparable, we use the initial hand-crafted dictionary as a
default option and we save the lexicon size for each generated lexicon with regard to this
default dictionary. Thus, for each generated pronunciation dictionary, we operate only with
words that are present in the training set of the VoxForge corpus. The words that are not
present in the training set and, as a consequence, for which no word entries were generated
in these dictionaries were borrowed from the default dictionary. Hence, the comparison
of these dictionaries considers only the difference for some set of words but this helps to
compare only the results caused by the change in lexicon generation procedure and not
caused by other factors such as the number of OOV words for a particular dictionary.

It is important to mention that we do not handle OOV words anyhow. That means
that we avoid using the G2P system for generating of OOV words for the lexicon as it is
usually used in ASR systems. The avoidance of using the G2P system does not play any
particular role for our research and using or not using the G2P system for OOV words
does not influence the comparison of the dictionaries.

# words # prons avg # prons

1 1

123 699

123 699 1.0
1 2 130 008 1.051
1 3 135 646 1.097
1 4 140 303 1.134

1 all 205 188 1.659
clust 133 945 1.083

clust bic 132 597 1.072
cmu bic {unnorm,norm} ed 130 229 1.053

g2p 123 699 1.0
cmu 132 982 1.075

Table 4: The number of words, the number of pronunciations and the average number of
pronunciations for each of the lexicons.
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In table 4, we provide the main statistics of the considered lexicons. For each lexicon
(the first column of the table), in the second column we cite the number of words, in the
third column the number of different pronunciations and in the fourth column the average
number of pronunciations per word in the lexicon.
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Lexicon Way of creation
Basis for pron

including
# of prons
per word

1 1
majority voting
for decodings

the most frequent
among all prons

1

1 2
majority voting

or decodings
the most frequent
among all prons

1-2

1 3
majority voting
for decodings

the most frequent
among all prons

1-3

1 4
majority voting
for decodings

the most frequent
among all prons

1-4

1 all
majority voting
for decodings

the most frequent
among all prons

all available

clust
pronunciation

clustering
(GMM + AWE1)

the most frequent
in a cluster

1-5

clust bic
pronunciation

clustering
(GMM + BIC + AWE1)

the most frequent
in a cluster

automatically
derived

clust bic
unnorm ed

pronunciation
clustering

(GMM + BIC +
AWE2 un)

the most frequent
in a cluster

automatically
derived

clust bic
norm ed

pronunciation
clustering

(GMM + BIC +
AWE2 n)

the most frequent
in a cluster

automatically
derived

g2p G2P conversion
motivated by

grapheme
correspondence

1

cmu hand crafting
linguistically

motivated
1-3

Table 5: The overview of all introduced lexicons for the experiment. AWE1 denotes feature
extraction for pronunciation clustering that aims to differentiate words. AWE2 refers to
feature extraction for pronunciation clustering that aims to differentiate pronunciations.
AWE2 with n suffix means the AWE training with normalized edit distance. AWE2 with
n suffix signifies the AWE training with unnormalized edit distance.
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9 Results

To avoid linguistically motivated pronunciations, we defined a lexicon generated directly
from data with the help of pronunciation clustering. We proposed several methods of
feature training for clustering analysis with the GMM algorithm that we would like to
evaluate in terms of ASR performance. For the evaluation of the generated data-driven
lexicons, we came up with several baseline and benchmark lexicons for comparison. The
evaluation of different lexicons is considered to be done through the training of ASR systems
with the use of each of the determined lexicons and comparing their performance in terms
of WER score.

In this chapter, we present the comparative results obtained for the whole pipeline of
data-driven pronunciation generation based on pronunciation clustering. In section 9.1,
we introduce the architecture and features of the ASR system that is used for training
with different lexicons. Section 9.2 is devoted to the ASR results obtained for the different
considered lexicons and to the exploration of the performance of these lexicons. Finally, in
section 9.3, we discuss the results and make some conclusive remarks.

9.1 ASR training

To compare the quality of lexicons (listed in table 5), we train ASR systems using the
generated lexicons and evaluate the performance of ASR systems in terms of WER score.

The ASR model was trained using the Kaldi speech recognition toolkit for the VoxForge
English corpus (more information about the corpus can be found in chapter 5). We use
our own extension of the existent recipe for the VoxForge corpus in Kaldi31.

We use data of all available dialects for English in the VoxForge corpus (approximately
10 different dialects). The data was normalized, the language model was prepared with
the help of SRILM32. The lexicon and phone lists varied dependently on which of the
considered lexicons we test. OOV words were not handled in our experimental setup. The
MFCC features were extracted with the internal Kaldi tool.

The data has been split into train and test sets. In the training set, utterances of 2 870
speakers were used. In the test set, utterances of 20 speakers were used. The number of
utterances in the training set is 76 551.

Then, we train our model in a consecutive manner. Firstly, we train monophone model33

on the 1 000 subset of the data. Then, we align the data using this model and train the
triphone model on delta + delta-delta features34. Then, we again align all the data with
the previously trained model and train the acoustic model with LDA + MLLT feature
transforms35. After that, we align our data with the trained LDA + MLLT model and

31https://github.com/kaldi-asr/kaldi/tree/master/egs/voxforge
32http://www.speech.sri.com/projects/srilm/
33https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_mono.sh
34https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_deltas.sh
35https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_lda_mllt.sh
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train the acoustic model on LDA + MLLT features with applying SAT36. Finally, we align
the data with LDA + MLLT + SAT model and train deep neural network ASR model
with the nnet3 Kaldi module37.

Further, we decode the test set with the internal Kaldi decoding38 and measure WER
and SER scores39. We discuss the obtained lexicon results in the next section.

9.2 ASR results

In table 6, we provide results for the ASR systems trained on different lexicons discussed
in chapter 8. The lexicons are referred to by the labels assigned in chapter 8. We provide
both WER and SER scores and mark the best WER and SER scores with bold script.

1 1 1 3 1 all clust g2p cmu

WER 15.97 14.66 35.73 19.99 9.78 9.47
SER 61.29 57.8 83.87 72.58 44.09 42.74

Table 6: The WER and SER scores for ASR systems trained with baseline 1 1, 1 3, 1 all,
data-driven clust and benchmark cmu lexicons.

As we can see from the table, the results for hand-crafted CMU dictionary (cmu) are the
best. Writing down in the dictionary only the most frequent pronunciation (1 1) showed to
be less successful in terms of WER than considering the top three frequent pronunciations
for a word (1 3). We can see more than one WER score point difference between these
two dictionaries. The result for the dictionary with all possible pronunciations (1 all) for a
word is the worst among all. We expected this dictionary to perform quite badly since the
more pronunciation alternatives we have, the more the ASR system is confused by them
and the higher chance to get the wrong decoded sequence.

clust clust bic clust bic unnorm ed clust bic norm ed

WER 19.99 16.17 14.63 14.69
SER 72.58 62.37 58.6 58.6

Table 7: The WER and SER scores for ASR systems trained with data-driven clust,
clust bic, clust bic unnorm ed and clust bic norm ed lexicons.

The results for the clustering experiment (clust) showed surprisingly bad WER results
being almost twice worse than the hand-crafted dictionary. This lexicon could not even
compete with fully G2P lexicon (g2p) which performs slightly worse than hand-crafted
dictionary. In table 7, we present more experiments on pronunciation clustering. We can

36https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/train_sat.sh
37https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/nnet3/chain/train.py
38https://github.com/kaldi-asr/kaldi/blob/master/egs/wsj/s5/steps/decode.sh
39https://github.com/kaldi-asr/kaldi/blob/master/egs/voxforge/s5/local/score.sh
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improve the results by introducing not five predefined clusters but the stopping criterion
for choosing the number of clusters (clust bic). Moreover, the proposed AWE training
extension (clust bic {unnorm, norm} ed) improves results even more. In the table, we
present the results for two types of edit distance calculation (unnormalized and normalized).
We can see that the difference between unnormalized edit distance clust bic unnorm ed
lexicon and normalized edit distance clust bic norm ed lexicon is negligible. However,
the WER score for the best-performing clustering method clust bic unnorm ed is still
worse than for the hand-crafted dictionary for more than five points.

1 1 1 2 1 3 1 4 1 all

WER 15.97 16.62 14.66 16.45 35.73
SER 61.29 62.37 57.8 60.75 83.87

Table 8: The WER and SER scores for ASR systems trained with baseline 1 1, 1 2, 1 3,
1 4, 1 all lexicons.

Table 8 shows the results of the experiment on finding the best possible number of
lexicon entries per word. As we can see from the table, the lexicon with three pronunciations
per word outperforms the rest of the considered lexicons with only one, two, four and
all pronunciations. The number three seems to be very reasonable for the number of
pronunciations to be included in the dictionary. For some words, we definitely have more
than one pronunciation but including too many of them confuses the ASR system. From
these results, we can suggest that an average number of four pronunciation entries in the
dictionary already surpasses the threshold of a proper number of pronunciations per word
in the lexicon.

In the following table, the comparative results of experiments on applying different
pronunciation probability strategies in a lexicon are presented (pronunciation probabilities
were discussed in chapter 8).

Pronunciation probability Lexicon WER

no prob
clust bic unnorm ed 14.63
clust bic norm ed 14.69

prob
clust bic unnorm ed 11.17
clust bic norm ed 11.2

rescaled prob
clust bic unnorm ed 13.56
clust bic norm ed 13.35

Table 9: The WER comparison for ASR systems trained with two data-driven clust-
bic unnorm ed and clust bic norm ed lexicons with using different pronunciation

probability assignment strategies.

From the table, we can see that results for both clust bic unnorm ed and clust -
bic norm ed lexicons are quite consistent in terms of behaviour when probabilities are
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applied. This experiment shows that writing no probabilities (”no prob” in the table) for
word pronunciations (having all pronunciation probabilities equal to 1.0) results in worse
performance for the ASR system in comparison to introducing such probabilities. Apply-
ing the standard notion of probabilities to pronunciation variants when probabilities of
all pronunciation variants sum up to one (”prob” in the table) gives us the improvement
of more than three percent for both lexicons in comparison to not using any probabili-
ties. Rescaled probabilities (”rescaled prob” in the table) with the most probable word
pronunciation having probability 1.0 also improves the result but not as much as normal
probabilities. This result can mean that by lowering down pronunciation probabilities we
give more power and freedom for the language model to influence the decoding by its prob-
abilities that can predict candidates based on language model probabilities extracted from
data when an acoustic model is unsure.

In figure 10, we gather the most successful lexicons of our experiments. Even though
we surpassed the set baseline (1 3 in figure 10), we could not reach the benchmark level
(cmu lexicon).

1 3 clust bic unnorm ed g2p cmu

WER 14.66 11.17 9.78 9.47
SER 57.8 45.97 44.09 42.74

Table 10: The WER and SER scores for the ASR systems trained with best performing
lexicons from baseline, data-driven and benchmark lexicons.

1 3 clust bic unnorm ed g2p cmu

Total words 517 516 345 334
Unique words 277 281 223 216
Percentage 53.6 54.5 64.6 64.7

Table 11: The total number of incorrectly decoded words, the number of incorrectly de-
coded unique words and the percentage of unique words from the total number of words
for 1 3, clust bic unnorm ed, g2p and cmu lexicons.

In table 11, we calculated what percent of total words that were got wrongly are unique
words for the lexicons presented in table 10. From this table, we can conclude that the
difference in the percentage of unique words that comprise the incorrectly got words by
the ASR system for our clustered lexicon and for the hand-crafted CMU dictionary is big.
That means that our clust bic unnorm ed dictionary mostly makes mistakes for the
same words whereas the CMU dictionary has bigger variety of words that it misdecodes.
This could mean that the clustered dictionary has low-quality pronunciations for quite
frequent words in the test data so that in most cases if not all it cannot properly decode
them. The reasoning for the percentage difference for the hand-crafted dictionary and
clust bic unnorm ed can be applied also to difference in 1 3 and cmu dictionaries.
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In table 12, we provide two numbers that represent how many words the ASR system
trained on the original hand-crafted dictionary misdecoded while the ASR system trained
on the generated lexicons decoded correctly and vice versa. In this table, we also cite a
similar comparison for the G2P system.

1 3 clust bic unnorm ed

CMU wrong, gen dict right 14 10
CMU right, gen dict wrong 98 100
Percentage 14.3 10

1 3 clust bic unnorm ed

g2p wrong, gen dict right 18 14
g2p right, gen dict wrong 101 103
Percentage 17.8 13.6

Table 12: Comparison of 1 3 and clust bic unnorm ed (gen dict) with the CMU and
G2P dictionaries in terms of correctly decoded words.

From the table 12, we clearly see that the CMU dictionary outperforms significantly
other dictionaries in the number of words these dictionaries could not decode correctly
while the CMU dictionary could. However, the table 12 also shows that the number of
words that the CMU dictionary misses whereas a custom dictionary got it right for all
generated dictionaries is very small. This means that we could not even benefit from the
merged system of two dictionaries, the hand-crafted and a generated one since the CMU
dictionary performs quite successfully for the VoxForge corpus. Similar reasoning can be
applied for the comparison with the G2P lexicon.

9.3 Discussion

The results presented in the previous section show us that a hand-crafted dictionary still
stays the best option for the ASR training and we could not improve further on the CMU
result. There exists a big gap in performance between the proposed system based on
clustering analysis and the hand-crafted dictionary of more than 1.5 points. From this
result, we can conclude that our automatically generated dictionary lacks the descriptive
power for different pronunciations and the hand-crafted pronunciation dictionary cannot
be successfully replaced by the generated lexicon. If there is a need for the data-driven
lexicon generation, choosing three top pronunciations of a word and including them into
a pronunciation dictionary can be a comparatively good alternative, with reasonable low
WER score and computationally cheap.

The comparison with the lexicon generated by the G2P system also suggests that
the data-driven lexicon based on pronunciation clustering cannot compete with the widely
used system for OOV words generation. Thus, the proposed data-driven lexicon generation
system cannot be safely used for OOV words handling and the G2P model is still preferred
for such cases.
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Our main experiment on data-driven pronunciation generation that involves clustering
of pronunciations and writing pronunciations into the dictionary based on the detected
clusters showed unexpected bad results which could mean that either this approach is
not appropriate for the task of data-driven pronunciation generation or pronunciations
generated directly from data are less suitable for ASR than linguistically motivated ones
or it needs significant improvements. We can name several reasons why the proposed
system failed to achieve good results in the ASR task.

The main reason for our approach performing worse than expected can be in the qual-
ity of the features used for pronunciation clustering, namely AWEs. For using machine
learning methods, we extracted fixed-dimensional AWEs that are normally used for placing
particular word utterances in the embedding space. The main aim of AWEs is to differenti-
ate between different words. We proposed an extension of AWEs training in order to enable
the AWE model to differentiate between different pronunciations for a word. However, the
ability of the proposed training extension to distinguish between different pronunciations
is questionable. The discriminative power of AWEs can be not satisfactory for a cluster al-
gorithm to capture different word pronunciations which results in overall bad performance
of the approach. The unsatisfactory AWEs quality can be due to high reliance on the
correctness of the Viterbi decoding during AWE model training. The Viterbi decoding
can produce very noisy outputs which are hard to assess and this can result in the worse
resulting quality of acoustic embeddings since the noise confuses the model. Insufficient
amount of time for training also can be a justification for the inappropriate quality of
fixed-dimensional acoustic features.

Another reason for the proposed pronunciation generation approach to be still outper-
formed by the hand-crafted dictionary is clustering itself. In the case of pronunciation
clustering of automatically generated AWEs, the algorithm must be very robust to noise
and be able to model quite complex data topology. It can be the case that none of the ex-
plored unsupervised machine learning algorithms can cope with the task of pronunciation
clustering. This can be due to artificially created features instead of more reliable features
like MFCC extracted directly from an audio signal.

Finally, we did not devote enough time for fine-tuning of each step of our pronunciation
generation system. The problem of insufficient fine-tuning could also be one of the most
influential reasons for the system to underperform. Neural networks are really sensitive
to hyperparameter tuning and the proper construction of its architecture for the task of
AWE training. Clustering algorithms also require tuning of hyperparameters.

Based on these considerations, we tend to think that improvement at every stage of
the proposed data-driven pronunciation generation could finally lead to the better perfor-
mance of the generated dictionary for ASR and potentially outperform the hand-crafted
dictionary.

In the end, for this research, we wanted to focus on the English language and the
CMU hand-crafted dictionary that exists for this language to have a strong benchmark
lexicon for comparison. Unfortunately, we could not outperform such a strong benchmark
of this research since the hand-crafted lexicon developed for the widely and frequently
used language must be crafted in a qualitative way. Probably, the evaluation for other
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languages trained with commonly used lexicons for these languages could lead to the better
performance of the proposed pronunciation generation system.
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10 Conclusion

This research was devoted to the data-driven pronunciation generation for ASR purposes.
We developed a pronunciation generation system that completely relies on acoustic infor-
mation derived from data for pronunciations candidates. This approach for lexicon gen-
eration is absolutely novel and was not researched previously. For the task of data-driven
pronunciation generation, we introduced a method that uses clustering of word utterances
in order to identify pronunciation variants for a word. We conducted several experiments
on feature extraction (AWEs) for the clustering task and pronunciation clustering experi-
ments with various clustering algorithms. In the end, we evaluated the lexicons generated
by the proposed data-driven pronunciation generation system and compared their quality
with several generated baseline lexicons and a very strong CMU hand-crafted lexicon.

In our experiments, we discovered that edit distance criterion can serve for improvement
of the model that aims to differentiate between different pronunciations for a word. If
we use edit distance for utterances decoded with the Viterbi algorithm to sample the
data for the Siamese RNN setup in order to train AWEs, we can improve WER by more
than 1.5 points. The extensive clustering experiments showed that the most appropriate
clustering algorithm for pronunciation clustering with AWEs as feature vectors was the
GMM clustering algorithm with using the BIC as stopping criterion for detecting of the
number of clusters for a word. Moreover, we determined that applying probabilities in a
lexicon with the generated multiple pronunciation variants for a word improves for ASR
performance. In this regard, the most successful strategy for distributing probabilities of
pronunciations for a word is to rely on the absolute frequency of different decodings for a
word and calculate the corresponding probabilities that sum up to one.

Our final evaluation showed that the lexicon generated by our pronunciation generation
system (namely clust bic unnorm ed version of the proposed method) can outperform
all our baseline lexicons. However, it cannot reach the performance level of a benchmark
system represented by the CMU dictionary. Among introduced baselines, our pronunci-
ation generation system could slightly outperform a strong 1 3 baseline which considers
the three top pronunciation sequences decoded by the Viterbi algorithm as pronunciation
variants. Even though the CMU dictionary is a very well constructed and maintained
hand-crafted lexicon and it is a very hard task to beat its performance, the ultimate goal
of surpassing the performance of the hand-crafted dictionary was not met. We hypothesize
that the proposed system still lacks the necessary level of pronunciation modelling in order
to replace hand-crafted dictionaries for ASR. The proposed pronunciation generation sys-
tem could neither succeed to beat the lexicon generated by the G2P approach, the main
supervised approach for automatic lexicon generation. This suggests that the task of OOV
words also cannot be solved successfully by the proposed system. We observed that our
method was able to perform better on some individual cases and, in theory, can be used
in combination with a G2P system. This remains as a promising future work.

We consider the unsatisfactory quality of generated AWEs and the insufficient fine-
tuning of all components of pronunciation generation system to be the main reasons for
the proposed pronunciation generation system to still perform worse than the hand-crafted
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dictionary. Even though we attempted to increase the discriminative power of the AWE
model to distinguish between different word pronunciations, the extended AWE training
seems to lack the power of discrimination between different pronunciations for a word
which was shown by the visualization of the AWE space. Partially, we attribute the
performance of AWEs to specific implementation details and we plan to experiment with
other implementation in future work. In our work, we did not set the goal to find the best
parameters and architectures for the exploited machine learning algorithms and wanted to
see if the proposed system can at least cope with the task of pronunciation generation.

The main advantage of the proposed system for the pronunciation generation is that
generated pronunciations are completely derived from data using statistical methods. We
hypothesized that pronunciations modelled this way and not linguistically motivated as in
hand-crafted pronunciation dictionaries would have a positive impact on ASR modelling.
Since we still believe that there is a potential for this pronunciation generation system to
improve over the standard hand-crafted dictionaries and G2P systems, we consider that
some future work can be done in order to improve the proposed system.

First of all, an improvement of AWE quality should be gained. For achieving the
satisfactory quality of pronunciation discrimination of AWEs, the multitask training for
word and pronunciation discrimination can be considered. Now, AWEs are trained in a
sequential manner, first for word discrimination and then for pronunciation discrimination.
We suspect that pronunciation training may confuse the achieved word discrimination
level. For dealing with this problem, the simultaneous training for word and pronunciation
discrimination can be beneficial. Moreover, the proper fine-tuning of the whole system
should be done since it can bring some major improvement to the existent data-driven
pronunciation generation system.
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A Attachments

A.1 Results of clustering algorithms

Figure 28: Clustering results for the word minute by the K-Means algorithm with prede-
fined four clusters.
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Figure 29: Clustering results for the word minute by the DBSCAN algorithm.

Figure 30: Clustering results for the word minute by the OPTICS algorithm.
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Figure 31: Clustering results for the word minute by the som algorithm.

Figure 32: Clustering results for the word minute by the gng algorithm.
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Figure 33: Clustering results for the word minute by the gmm algorithm.

Language Analysis and Processing


	Introduction
	Motivation
	Goal

	Theoretical Background
	ASR
	ASR system architecture
	ASR evaluation

	Neural Networks
	Neuron
	Neural network architecture
	Training
	Recurrent Neural Networks

	ASR approaches
	Generative approach
	Hybrid approach

	Lexicons in ASR
	Lexicon generation


	Related Work
	Semi-supervised lexicon generation
	Unsupervised lexicon generation

	Research Outline
	Proposed approach
	Pronunciation clustering
	Feature extraction
	Decoding

	Experiment design
	Experiment pipeline


	Data
	Data overview
	Data processing
	Phone alignment
	Word alignment
	Word-based features


	Feature Extraction
	Feature extraction problem
	AWE review
	Research overview

	AWE extraction
	Data handling
	Neural network architecture
	Evaluation
	Results

	AWE extraction extension

	Clustering
	Clustering algorithms review
	K-Means
	GMM
	DBSCAN
	OPTICS
	SOM
	GNG

	Clustering experiments
	Results
	Discussion
	Improving clustering results


	Lexicon Generation
	Decoding
	Decoding procedure
	Preliminary decoding experiment

	Benchmark lexicon
	Baseline lexicons
	Data-driven lexicons
	Additional lexicons for comparison
	General lexicon information

	Results
	ASR training
	ASR results
	Discussion

	Conclusion
	Attachments
	Results of clustering algorithms


