

5th SALTMIL Workshop on Minority Languages Genoa, 23/5/2006

Statistical Machine Translation with a Small Amount of Bilingual Training Data

Maja Popović, Hermann Ney

Human Language Technology and Pattern Recognition Lehrstuhl für Informatik VI, Computer Science Department RWTH Aachen University D-52056 Aachen, Germany

Overview

- Motivation
- SMT with Sparse Training Data
- Recent Results
 - Spanish-English
 - Serbian-English
- Conclusions

Statistical Machine Translation (SMT)

• finding a target language sequence \hat{e}_1^I given a source language sequence f_1^J :

$$\hat{e}_{1}^{I} = rgmax_{e_{1}^{I}} \{ Pr(e_{1}^{I}|f_{1}^{J}) \}$$

• log-linear model:

$$\hat{e}_{1}^{I} = rgmax_{e_{1}^{I}} \{\sum_{m=1}^{M} \lambda_{m} h_{m}(e_{1}^{I}, f_{1}^{J})\}$$

– language model

$$h_m(e_1^I,f_1^J)=\log Pr(e_1^I)$$

translation model

. . .

$$h_m(e_1^I,f_1^J)=\log Pr(f_1^J|e_1^I)$$

Motivation

- translation model probabilities are extracted from a bilingual parallel text - training corpus
- the quality of a translation system usually depends on the size of this corpus
 - a large bilingual parallel corpus is often not available
 - \Rightarrow strategies for exploiting limited amounts of bilingual data for statistical machine translation

SMT with Sparse Bilingual Training Data

- Al-Onaizan & Germann⁺, 2000
 - comparing different translation methods on a small bilingual Tetun-English corpus
 - found out that the human mind is very capable of deriving dependencies such as morphology, cognates, proper names, etc.
 - \Rightarrow a crucial reason for better performance of human translation

- Callison-Burch & Osborne, 2003
 - co-training method for extension of a training corpus
 - new sentence pairs are produced by multiple translation models trained on different language pairs
 - \Rightarrow the best improvements achieved after two or three re-training rounds

5

23/5/2006

SMT with Sparse Bilingual Training Data

- Niessen & Ney, 2004
 - investigating impact of the corpus size for translation from German into English
 - morpho-syntactic information and conventional dictionary are used for improving the performance
 - \Rightarrow acceptable translation quality even with a very small corpus
- Matusov & Popović⁺, 2004
 - translation of spontaneous speech
 - acquiring additional training data using an n-gram coverage measure
 - morpho-syntactic information
- Popović & Ney, 2005
 - translation of Spanish-English and Catalan-English pair
 - phrasal lexicon and morpho-syntactic information for Spanish and Catalan verbs
 - ⇒ acceptable translation quality with only one thousand task-specific sentence pairs for training

SMT with Sparse Bilingual Training Data

- Popović & Vilar⁺, 2005
 - translation of Serbian-English pair with a very small corpus
 - morpho-syntactic information and phrasal book
 - \Rightarrow translation results comparable with results for other language pairs
- Goldwater & McClosky, 2005
 - translation of Czech-English pair
 - morphological information
- Lopez & Resnik, 2005; Martin & Mihalcea⁺, 2005
 - word alignments for languages with scarce resources
 - * Romanian-English
 - * Inuktikut-English
 - * Hindi-English

Recent Results - Experimental Settings -

8

Spanish-English and Serbian-English language pair

- Spanish-English
 - European Parliament Plenary Sessions (EPPS) corpus
 - conventional dictionary
- Serbian-English
 - Assimil language course corpus
 - small phrasal book
- various sizes of bilingual training corpus
- appropriate morpho-syntactic transformations
- language model trained on the largest target language text

Translation System

- state-of-the-art translation system
- log-linear combination of seven models:
 - two phrase-based models (source to target and target to source)
 - two single word based models at phrase level (source to target and target to source)
 - language model
 - phrase penalty and word penalty

Training and Test with Sparse Bilingual Resources

Spanish↔English - Training Corpora -

Training		Spanish	English	
1.3M Sentences		1281427		
	Running Words+PM	36578514	34918192	
	Vocabulary	153124	106496	
	Singletons [%]	35.2	36.2	
13k	Sentences	133	360	
	Running Words+PM	385198	366055	
	Vocabulary	22425	16326	
	Singletons [%]	47.6	43.7	
1k	Sentences	11	13	
	Running Words+PM	31022	29497	
	Vocabulary	5809	4749	
	Singletons [%]	60.8	55.3	
dict.	Entries	52566		
	Running Words+PM	60964	62011	
	Vocabulary	31126	30761	
	Singletons [%]	67.7	67.4	

11

Spanish↔English - Test Corpus -

Test	Spanish	English
Sentences	840	1094
Running Words+PM	22774	26917
Distinct Words	4081	3958
OOVs (1.3M) [%]	0.14	0.25
OOVs (13k) [%]	2.8	2.6
OOVs (1k) [%]	10.6	9.4
OOVs (dict.) [%]	19.1	16.2

Spanish↔English - Morpho-syntactic transformations -

- local reorderings of nouns and adjectives
- replacing Spanish adjectives with their base forms

Spanish original:motivos económicos y políticosreordered:económicos y políticos motivos+adjective baseeconómico y político motivos

Englishoriginal:economic and political reasonsreordered:reasons economic and political

Spanish→English - Translation Results -

S	Spanish→English	WER	PER	BLEU
dict	baseline	60.4	49.3	19.4
	+adjective treatment	56.4	46.8	23.8
1k	baseline	52.4	40.7	30.0
	+dictionary	48.0	36.5	36.0
	+adjective treatment	44.5	34.8	40.9
13k	baseline	41.8	30.7	43.2
	+dictionary	40.6	29.6	46.3
	+adjective treatment	38.3	29.0	49.6
1.3M	baseline	34.5	25.5	54.7
	+reorder adjective	33.5	25.2	56.4

- dictionary alone might be used for multilingual information retrieval
- reasonable translation quality with small corpora
 - dictionary and morpho-syntactic information are very important

14

• 1000 times larger corpus \Leftrightarrow 12-25% relative decrease of error rates

English→Spanish - Translation Results -

E	nglish→Spanish	WER	PER	BLEU
dict	baseline	67.6	55.9	14.1
	adjective treatment	65.7	54.5	16.5
1 k	baseline	60.1	47.4	23.9
	+dictionary	56.0	43.2	28.3
	adjective treatment	53.9	42.0	30.6
13k	baseline	49.6	37.4	36.2
	+dictionary	48.6	36.3	37.2
	adjective treatment	47.3	35.7	39.1
1.3M	baseline	39.7	30.6	47.8
	+reorder adjective	39.6	30.5	48.3

- similar effect as for the other translation direction
- improvements through dictionary and morpho-syntactic information are slightly smaller
 - translation into a more inflected language is more difficult
 - Spanish has a rather free word order

Serbian ↔ English - Training Corpora -

Training		Serbian	English
2.6k	Sentences	2632	
	Running Words+PM	22227	24808
	Vocabulary	4546	2645
	Singletons [%]	60.0	45.8
0.2k	Sentences	200	
	Running Words+PM	1666	1878
	Vocabulary	778	603
	Singletons [%]	79.4	65.5
phrases	Entries	351	
	Running Words+PM	617	730
	Vocabulary	335	315
	Singletons [%]	71.3	66.3

Serbian ↔ English - Test Corpus -

Test	Serbian	English	
Sentences	260		
Running Words+PM	2100	2336	
Distinct Words	891	674	
OOVs (2.6k) [%]	11.7	4.9	
OOVs (0.2k) [%]	35.2	21.8	

17

M. Popović, H. Ney: SMT with a small amount of bilingual training data

Serbian ↔ English - Morpho-syntactic transformations -

converting Serbian words into base forms

mali mala malog malu malom	small	\Rightarrow	mali	small
•••				

additional treatment of Serbian verbs

idemo	\Rightarrow	PL1 ići	<mark>we</mark> go
idem	\Rightarrow	SG1 ići	l go

removing English articles

when I have the flu, I keep a supply of paper handkerchiefs. $\downarrow\downarrow$ when I have flu, I keep supply of paper handkerchiefs.

Serbian ↔ English - Translation Results -

Sei	rbian→English	WER	PER	BLEU
0.2k	baseline	65.5	60.8	8.3
	+phrases	65.0	59.8	10.3
	+base forms	59.2	54.8	13.9
	+verb POS+neg	60.0	52.6	14.8
2.6 k	baseline	44.5	37.9	32.1
	+base forms	42.9	37.4	35.4
	+verb POS+neg	41.9	34.7	34.6

• results for extremely small corpus comparable with results for a dictionary

- phrases are helpful to some extent
- morphological information is very important
- acceptable performance with less than three thousand sentence pairs

English↔Serbian - Translation Results -

En	glish→Serbian	WER	PER	BLEU
0.2k	baseline	73.4	68.4	6.8
	+phrases	71.9	67.5	9.3
	+remove article	66.7	62.2	9.4
2.6 k	baseline	51.8	45.8	23.1
	+remove article	50.4	44.6	24.6

- higher error rates due to the rich morphology and free word order
- phrases are more important for this translation direction
- removing English articles is helpful

Conclusions

- an acceptable translation quality can be achieved with a very small amount of task-specific parallel text, especially if
 - conventional dictionaries and/or phrasal books
 - morpho-syntactic knowledge

are available

- translation systems built only on
 - conventional dictionary
 - phrasal book
 - extremely small parallel corpus

might be useful for document classification or multilingual information retrieval

References

- Al-Onaizan & Germann⁺, 2000. Translation with scarce resources.
 17th National Conference on Artificial Intelligence (AAAI), pages 672–678, Austin, TX, August.
- Callison-Burch & Osborne, 2003.
 Co-training for statistical machine translation.
 6th Annual CLUK Research Colloquium, Edinburgh, UK, January.
- Goldwater & McClosky, 2005 Improving statistical machine translation through morphological analysis. *Conf. on Empirical Methods for Natural Language Processing (EMNLP)*, Vancouver, Canada, October.
- Lopez & Resnik, 2005. Improved HMM alignment for languages with scarce resources. ACL Workshop on Builiding and Using Parallel Texts: Data-Driven Machine Translation and Beyond, pages 83–86, Ann Arbor, MI, June.

References

- Martin & Mihalcea⁺, 2005. Word alignments for languages with scarce resources. ACL Workshop on Builiding and Using Parallel Texts: Data-Driven Machine Translation and Beyond, pages 65–74, Ann Arbor, MI, June.
- Matusov & Popović⁺, 2004. Statistical machine translation of spontaneous speech with scarce resources. *Int. Workshop on Spoken Language Translation (IWSLT)*, pages 139–146, Kyoto, Japan, September.
- Niessen & Ney, 2004.

Statistical machine translation with scarce resources using morpho-syntactic information. *Computational Linguistics*, 30(2):181–204

References

• Popović & Ney, 2005.

Exploiting phrasal lexica and additional morpho-syntactic language resources for statistical machine translation with scarce training data. *10th Annual Conf. on the European Association for Machine Translation (EAMT)*, pages 212–218, Budapest, Hungary, May.

• Popović & Vilar⁺, 2005.

Augmenting a small parallel text with morpho-syntactic language resources for Serbian-English statistical machine translation. *ACL Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and Beyond*, pages 41–48, Ann Arbor, MI, June.

• Popović & Ney, 2006.

POS-based word reorderings for statistical machine translation. *5th Int. Conf. on Language Resources and Evaluation (LREC)*, Genoa, Italy, May.

