References

  • [AGRAWAL11] R. Agrawal, T. Imielinski, A. N. Swami, Mining association rules between sets of items in large databases, ACM SIGMOD 1993, pp. 207–216

  • [ALMAGRO2019] Almagro, M., Martínez, R., Montalvo, S., & Fresno, V. (2019). A cross-lingual approach to automatic ICD-10 coding of death certificates by exploring machine translation. Journal of biomedical informatics, 94, 103207.

  • [ALTUNA2017] Altuna, B., Aranzabe, M. J., & de Ilarraza, A. D. (2017). EusHeidelTime: Time Expression Extraction and Normalisation for Basque. Procesamiento del Lenguaje Natural, (59), 15-22.

  • [ANTUNES2017] Antunes, R., and Sérgio Matos. “Biomedical Word Sense Disambiguation with Word Embeddings”. Proceedings of the 11th International Conference on Practical Applications of Computational Biology & Bioinformatics, pp. 273–279 (2017).

  • [ARONSON2001] Aronson AR. “Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program”. In: Bakken S, editor. Proceedings of the American medical informatics association's annual symposium. Willow Grove, PA, USA: Hanley & Belfus Inc.; p. 17–21 (2001)

  • [ATUTXA2019] Atutxa, A., de Ilarraza, A. D., Gojenola, K., Oronoz, M., & Perez-de-Viñaspre, O. (2019). Interpretable deep learning to map diagnostic texts to ICD-10 codes. International Journal of Medical Informatics, 129, 49-59.

  • [AVERILL2013] Averill, Richard F., and Rhonda Butler. "Misperceptions, misinformation, and misrepresentations: The ICD-10-CM/PCS saga." Journal of AHIMA (2013).

  • [BETHARD2017] Bethard, Steven; Savova, Guergana; Palmer, Martha; Pustejovsky, James; 2017. SemEval-2017 Task 12: Clinical TempEval. Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017). Association for Computational Linguistics, Vancouver, Canada.

  • [BHATIA2019] Bhatia, P., Arumae, K., & Celikkaya, E. B. (2019). Dynamic transfer learning for named entity recognition. Int. Workshop on Health Intelligence (pp. 69-81). Springer.

  • [BURKE2010] Burke, Mary C. Transforming gender: Medicine, body politics, and the transgender rights movement. University of Connecticut, 2010.

  • [CALLAHAN2019] Callahan, T. J., Bodenreider, O., & Kahn, M. G. (2019). Towards Patient-Driven Phenotyping and Similarity for Precision Medicine. F1000Research, 8.

  • [CARTER12] Carter, P. E., & Grenyer, B. F. S. (2012). Expressive language disturbance in Borderline Personality Disorder in response to emotional autobiographical stimuli. Journal of Personality Disorders, 26, 305–321.

  • [CASTAÑO2018] Castaño, J., Pilar Ávila, David Pérez, Hernán Berinsky, Hee Park, Laura Gambarte, and Daniel Luna. “A Simple Approach to Abbreviation Resolution at BARR2, IberEval 2018”. Proceedings of the Third Workshop on Evaluation of Human Language Technologies for Iberian Languages, pp. 316-321 (2018).

  • [CHALENDAR14] de Chalendar, M., Daniel, M., Olry, A., Rath, A., 2014. Rare diseases and disabilities: improving the information available with three orphanet projects. Orphanet Journal of Rare Diseases 9 (1), O31.

  • [CHANG2012] Chang, A. X., & Manning, C. D. (2012). Sutime: A library for recognizing and normalizing time expressions. In Lrec (Vol. 2012, pp. 3735-3740).

  • [CHARBONNIER2018] Charbonnier, J., and Christian Wartena. “Using Word Embeddings for Unsupervised Acronym Disambiguation”. Proceedings of the 27th International Conference on Computational Linguistics, pp. 2610–2619 (2018).

  • [CHEN2017] Y. Chen, H. Lu, L. Li, Automatic icd-10 coding algorithm using an improved longest common subsequence based on semantic similarity, PloS one, 2017, 12, 3.

  • [CIOSICI2019] Ciosici, M.R., Tobias Sommer, and Ira Assent. “Unsupervised Abbreviation Disambiguation Contextual disambiguation using word embeddings”. arXiv e-prints, page arXiv:1904.00929 (2019).

  • [CUADROS2018] Cuadros, M., Naiara Pérez, Iker Montoya, and Aitor García Pablos. “Vicomtech at BARR2: Detecting Biomedical Abbreviations with ML Methods and Dictionary-based Heuristics”. Proceedings of the Third Workshop on Evaluation of Human Language Technologies for Iberian Languages, pp. 322-328 (2018).

  • [DERCZYNSKI2016] Derczynski, L., Strötgen, J., Maynard, D., Greenwood, M. A., & Jung, M. (2016). Gate-time: Extraction of temporal expressions and event. In 10th Language Resources and Evaluation Conference (pp. 3702-3708). European Language Resources Association (ELRA).

  • [DOYLE2019] Doyle, J., Abraham, S., Feeney, L., Reimer, S., & Finkelstein, A. (2019). Clinical decision support for high-cost imaging: A randomized clinical trial. PloS one, 14(3).

  • [FABREGAT18A] Hermenegildo Fabregat, Juan Martínez-Romo, Lourdes Araujo:Overview of the DIANN Task: Disability Annotation Task. IberEval@SEPLN 2018: 1-14

  • [FABREGAT18B] Hermenegildo Fabregat, Lourdes Araujo, Juan Martínez-Romo: Deep neural models for extracting entities and relationships in the new RDD corpus relating disabilities and rare diseases. Computer Methods and Programs in Biomedicine 164: 121-129 (2018)

  • [FINLEY2016] Finley, G.P., Serguei VS Pakhomov, Reed McEwan, and Genevieve B Melton. “Towards Comprehensive Clinical Abbreviation Disambiguation Using Machine-Labeled Training Data”. Proceedings of the AMIA Annual Symposium, pp. 560–569 (2016).

  • [FRACKE2008] Francke AL, Smit MC, de Veer AJ, Mistiaen P. Factors influencing the implementation of clinical guidelines for health care professionals: a systematic meta-review. BMC Med Inform Decis Mak. 2008;8:38. doi:10.1186/1472-6947-8-38.

  • [FRIEDMAN2000] Friedman, Carol. "A broad-coverage natural language processing system." Proceedings of the AMIA Symposium. American Medical Informatics Association, 2000.

  • [FRIEDMAN2004] Friedman, Carol, et al. "Automated encoding of clinical documents based on natural language processing." Journal of the American Medical Informatics Association 11.5 (2004): 392-402.

  • [GARG2005] Garg AX, Adhikari NKJ, McDonald H, Rosas-Arellano MP, Devereaux PJ, Beyene J, et al. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA. 2005;293(15755945):1223–38.

  • [GEHRMANN2018] Gehrmann, S., Dernoncourt, F. L., Yeran Carlson, E. T., Wu, J: T., Welt, J, Foote, J. J, Moseley, E. T., Grant, D. W., Tyler, P. D., Celi, L. A. (2018) Comparing deep learning and concept extraction based methods for patient phenotyping from clinical narratives. PLOS ONE 13(2): e0192360.

  • [GORYACHEV2006] Goryachev, Sergey, Margarita Sordo, and Qing T. Zeng. "A suite of natural language processing tools developed for the I2B2 project." AMIA Annual Symposium Proceedings. Vol. 2006. American Medical Informatics Association, 2006.

  • [HAO2018] Hao, T., Pan, X., Gu, Z., Qu, Y., & Weng, H. (2018). A pattern learning-based method for temporal expression extraction and normalization from multi-lingual heterogeneous clinical texts. BMC medical informatics and decision making, 18(1), 22.

  • [HARRIS1954] Distributional structure. Word, 10(23):146–162.

  • [HASSAN2019] F. Hassan, M. Jabreel, N. Maarrof, D. Sánchez, J. Domingo-Ferrer, A. Moreno. ReCRF: Spanish Medical Document Anonymization using Automatically-crafted Rules and CRF. In: Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019). CEUR Workshop Proceedings (CEUR-WS.org), Vol-2421, pp. 727-734, 2019.

  • [HUNSCHER2006] Hunscher, Dale, et al. "Representing natural-language case report form terminology using Health Level 7 Common Document Architecture, LOINC, and SNOMED-CT: Lessons Learned." AMIA Annual Symposium Proceedings. Vol. 2006. American Medical Informatics Association, 2006.

  • [JI2019] Ji, B., Liu, R., Li, S., Yu, J., Wu, Q., Tan, Y., & Wu, J. (2019). A hybrid approach for named entity recognition in Chinese electronic medical record. BMC medical informatics and decision making, 19(2), 64.

  • [KAWAMOTO2005] Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. BMJ 2005;330(7494):765.

  • [KIRCHHOFF2016] Kirchhoff, K., and Anne M Turner. “Unsupervised resolution of acronyms and abbreviations in nursing notes using document-level context models”. Proceedings of the Seventh Int. Workshop on Health Text Mining and Information Analysis, pp. 52-60 (2016).

  • [KOMOROWSKI2018] Komorowski M., Celi L. A., Badawi O. , Gordon A. C. and Faisal A. A. “The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care”. Nature Medicine 24, pp. 1716-1720 (2018)

  • [KOOPMAN2015] Koopman, B., Zuccon, G., Nguyen, A., Bergheim, A., & Grayson, N. (2015). Automatic ICD-10 classification of cancers from free-text death certificates. International journal of medical informatics, 84(11), 956-965.

  • [LANGE2019] L. Lange, H. Adel, J. Strötgen. NLNDE: The Neither-Language-Nor-Domain-Experts' Way of Spanish Medical Document De-Identification.. In: Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019). CEUR Workshop Proceedings (CEUR-WS.org), Vol-2421, pp. 671-678, 2019.

  • [MARIMON2019] Marimon, M., Gonzalez-Agirre, A., Intxaurrondo, A., Rodríguez, H., Lopez Martin, J.A., Villegas, M., Krallinger, M.: Automatic de-identification of medical texts in Spanish: the MEDDOCAN track, corpus, guidelines, methods and evaluation of results. In: Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019). CEUR Workshop Proceedings (CEUR-WS.org), Vol-2421, 2019.

  • [MESH2019] National Library of Medicine. Medical Subject Headings (MeSH). http://www.nlm.nih.gov/mesh/. (accessed Sept-2019)

  • [METAMAP2019] National Library of Medicine. MetaMap Portal. http://mmtx.nlm.nih.gov/. (accessed Sept-2019)

  • [MIDDLETON2016] B. Middleton, D. F. Sittig, A. Wright Clinical Decision Support: a 25 Year Retrospective and a 25 Year Vision IMIA Yearbook of Medical Informatics 2016

  • [MIKOLOV2013] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed representations of words and phrases and their compositionality. CoRR , abs/1310.4546.

  • [MILLER1956] Miller, George A. "The magical number seven, plus or minus two: Some limits on our capacity for processing information." Psychological review 63.2 (1956): 81.

  • [MINOR15] Minor, K. S., Bonfils, K. A., Luther, L., Firmin, R. L., Kukla, M., MacLain, V. R., et al.(2015). Lexical analysis in schizophrenia: How emotion and social word use informs our understanding of clinical presentation. Journal of Psychiatric Research, 64, 74–78.

  • [MITCHELL2010] Jeff Mitchell and Mirella Lapata. 2010. Composition in Distributional Models of Semantics. Cognitive Science, 34(8):1388–1429.

  • [MONTALVO2018] Montalvo, S., Raquel Martínez, Mario Almagro, and Susana Lorenzo. “MAMTRA-MED at Biomedical Abbreviation Recognition and Resolution – IberEval 2018”. Proceedings of the Third Workshop on Evaluation of Human Language Technologies for Iberian Languages, pp. 290-296 (2018).

  • [MORANTE2012] Morante, R., & Blanco, E. (2012, June). * SEM 2012 shared task: Resolving the scope and focus of negation. In Proceedings of the First Joint Conference on Lexical and Computational Semantics (pp. 265-274). Association for Computational Linguistics.

  • [MOTA2018] Mota, E., Martín, N., Moreno, A., Ferrete, E., Santamaría, J., Marimon, M., Intxaurrondo, A., Gonzalez-Agirre, A., Villegas, M., Krallinger, M.: Guías de anotación de información de salud protegida (Oct 2018), http://temu.bsc.es/meddocan/wp-content/uploads/2019/02/guías-de-anotaciónde-información-de-salud-protegida.pdf.

  • [MUJTABA2017] Mujtaba, G., Shuib, L., Raj, R. G., Rajandram, R., Shaikh, K., & Al-Garadi, M. A. (2017). Automatic ICD-10 multi-class classification of cause of death from plaintext autopsy reports through expert-driven feature selection. PloS one, 12(2), e0170242.

  • [NAJAFABADIPOUR2019] Najafabadipour, M., Zanin, M., Rodríguez-González, A., Gonzalo-Martín, C., García, B. N., Calvo, V., ... & Menasalvas, E. (2019, June). Recognition of Time Expressions in Spanish Electronic Health Records. In 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS) (pp. 69-74). IEEE.

  • [NIEHOFF2016] Niehoff, K. M., Rajeevan, N., Charpentier, P. A., Miller, P. L., Goldstein, M. K., & Fried, T. R. (2016). Development of the tool to reduce inappropriate medications (TRIM): a clinical decision support system to improve medication prescribing for older adults. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 36(6), 694-701.

  • [NING2016] W. Ning, M. Yu, R. Zhang, A hierarchical method to automatically encode chi-380nese diagnoses through semantic similarity estimation, BMC medical informatics and decision making, 2016, 16, 1, pp. 30.

  • [OREN16] Oren, E., Friedmann, N., & Dar, R. (2016). Things happen: Individuals with high obsessive-compulsive tendencies omit agency in their spoken language. Consciousness and Cognition, 42, 125–134.

  • [OSHEROFF 2012] Osheroff JA, Levick DL, Saldana L, Velasco FT, Sittig DF, Rogers KM, et al. Improving Outcomes with Clinical Decision Support: An Implementer’s Guide, 2nd ed., Healthcare Information and Management Systems Society, Chicago, IL; 2012.

  • [OZAYDIN 2016] Ozaydin B., Hardin J.M., Chhieng D.C. (2016) Data Mining and Clinical Decision Support Systems. In: Berner E. (eds) Clinical Decision Support Systems. Health Informatics. Springer, Cham

  • [PAYAM2012] Homayounfar, Payam. "Process mining challenges in hospital information systems." 2012 Federated Conference on Computer Science and Information Systems (FedCSIS). IEEE, 2012.

  • [PENNINTON2014] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) , pages 1532–1543, Doha, Qatar. Association for Computational Linguistics.

  • [PEREZ2018] Perez-Miguel N., Cuadros M. and Rigau G. Biomedical term normalization of EHRs with UMLS. Proceedings of the 11th Language Resources and Evaluation Conference (LREC'18). Miyazaki, Japan 2018.

  • [PEREZ2019] N. Perez, L. García-Sardiña, M. Serras, A. Del Pozo. Vicomtech at MEDDOCAN: Medical Document Anonymization. In: Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2019). CEUR Workshop Proceedings, Vol-2421, pp. 696-703, 2019.

  • [ROSHANOV2011] Roshanov, P. S., Misra, S., Gerstein, H. C., Garg, A. X., Sebaldt, R. J., Mackay, J. A., ... & Haynes, R. B. (2011). Computerized clinical decision support systems for chronic disease management: a decision-maker-researcher partnership systematic review. Implementation Science, 6(1), 92.

  • [RUBIO-LOPEZ2017] Rubio-López, I., Roberto Costumero, Héctor Ambit, Consuelo Gonzalo-Martín, Ernestina Menasalvas, and Alejandro Rodríguez González. “Acronym Disambiguation in Spanish Electronic Health Narratives Using Machine Learning Techniques”. Studies in Health Technology and Informatics. Volume 235: Informatics for Health: Connected Citizen-Led Wellness and Population Health, pp. 251-255 (2017).

  • [SANCHEZ-LEON2018] Sánchez-León, F. “ARBOREx: Abbreviation Resolution Based on Regular Expressions for BARR2”. Proceedings of the Third Workshop on Evaluation of Human Language Technologies for Iberian Languages co-located with 34th Conference of the Spanish Society for Natural Language Processing, pp. 302-315 (2018).

  • [SANCHEZ2018] Sánchez, C., and Paloma Martínez. “A Simple Method to Extract Abbreviations Within a Document Using Regular Expressions”. Proceedings of the Third Workshop on Evaluation of Human Language Technologies for Iberian Languages co-located with 34th Conf. of the Spanish Society for Natural Language Processing, pp. 297-301 (2018).

  • [SHKNEVSKY2017] Alexander Shknevsky, Yuval Shahar, Robert Moskovitch, 2017. Consistent Discovery of Frequent Interval-Based Temporal Patterns in Chronic Patients’ Data. Journal of Biomedical Informatics (2017), doi: https://doi.org/10.1016/j.jbi.2017.10.002

  • [SILVA18] Silva, B.B.C., Paraboni, I.: Personality recognition from Facebook text. In: 13th In-ternational Conference on the Computational Processing ofPortuguese (PROPOR-2018) LNCS vol. 11122. pp. 107–114. Springer-Verlag, Canela (2018)

  • [SMOLENSKY2016] Paul Smolensky, Moontae Lee, Xiaodong He, Wen-tau Yih, Jianfeng Gao, and li Deng. 2016. Basic reasoning with tensor product representations.

  • [SNOMED2019] International Health Terminology Standards Development Organisation. SNOMED-CT. http://www.ihtsdo.org/snomed-ct/ (accessed Sept-2019)

  • [STRÖTGEN2010] Strötgen, J., & Gertz, M. (2010, July). HeidelTime: High quality rule-based extraction and normalization of temporal expressions. In Proceedings of the 5th International Workshop on Semantic Evaluation (pp. 321-324). ACL.

  • [SUSHILA2015] Sushila S. Shelke, Suhasini A. Itkar, 2015. Directed Graph based Distributed Sequential Pattern Mining Using Hadoop Map Reduce. International Journal on Recent and Innovation Trends in Computing and Communication 3(2), 431-437. 2015

  • [TANG2013] Tang, B., Wu, Y., Jiang, M., Chen, Y., Denny, J. C., & Xu, H. (2013). A hybrid system for temporal information extraction from clinical text. Journal of the American Medical Informatics Association, 20(5), 828-835.

  • [UMLS2019] National Library of Medicine. Unified Medical Language System (UMLS). http://www.nlm.nih.gov/research/umls/ (accessed Sept-2019)

  • [VELICKOVSKI2014] Velickovski, F., Ceccaroni, L., Roca, J., Burgos, F., Galdiz, J. B., Marina, N., & Lluch-Ariet, M. (2014). Clinical Decision Support Systems (CDSS) for preventive management of COPD patients. Journal of translational medicine, 12(2), S9.

  • [VIANI2018] Viani, N., Yin, L., Kam, J., Alawi, A., Bittar, A., Dutta, R., & Velupillai, S. (2018). Time Expressions in Mental Health Records for Symptom Onset Extraction. Proceedings of the Ninth Int. Workshop on Health Text Mining and Information Analysis (pp. 183-192).

  • [WAGHOLIKAR2012] Wagholikar, Kavishwar B., Vijayraghavan Sundararajan, and Ashok W. Deshpande. "Modeling paradigms for medical diagnostic decision support: a survey and future directions." Journal of medical systems 36.5 (2012): 3029-3049.

  • [WALSH2016] Walsh, T. S., Salisbury, L., Donaghy, E., Ramsay, P., Lee, R., Rattray, J., & Lone, N. (2016). PReventing early unplanned hOspital readmission aFter critical ILlnEss (PROFILE): protocol and analysis framework for a mixed methods study. BMJ open, 6(6), e012590.

  • [WANG2016] Wang, Y., Kai Zheng, Hua Xu, and Qiaozhu Mei. “Clinical word sense disambiguation with interactive search and classification”. Proceedings of the AMIA Annual Symposium. American Medical Informatics Association (2016).

  • [WHO2016] Multimorbidity: Technical Series on Safer Primary Care. Geneva: World Health Organization; 2016. Licence: CC BY-NC-SA 3.0 IGO.

  • [WU2015] Wu, Y., Jun Xu, Yaoyun Zhang, and Hua Xu. “Clinical abbreviation disambiguation using neural Word embeddings”. Proceedings of the 2015 Workshop on Biomedical Natural Language Processing (BioNLP), pp. 171–176 (2015).

  • [XIE2018] P. Xie, E. Xing, A neural architecture for automated icd coding, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2018, pp. 1066–1076.

  • [ZAFRA2018] Jiménez-Zafra, S. M., Cruz-Díaz, N. P., Morante, R., & Martín-Valdivia, M. T. (2018b). Tarea 2 del Taller NEGES 2018: Detección de Claves de Negación. In Proceedings of NEGES 2018: Workshop on Negation in Spanish (Vol. 2174, pp. 35- 41).

  • [ZHANG2014] Jiannan Zhang. 2014. A Generic Evaluation of a Categorical Compositional-distributional Model of Meaning . Ph.D. thesis, University of Oxford.